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Toy model

Consider
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n is even

For � ⌧ 1 the integral An(�) can be esimated

Perturbatively

Via steepest descend method

Let’s compare both approaches!
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Perturbation theory

Expand exp
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Asymptotic series can be rewiritten
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k-th order contribution is A0
n multiplied by polynomial of order n2k
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Perturbation theory resummation

One can resum �k
n
2k and �k

n
2k�1 terms in the series
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Appearance of e
F1(�n)

� and corrections / F2(�n)/� and / G1(�n)
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Steepest descend approximation
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We consider the limit � ⌧ 1, �n - fixed

Saddle-point equation

x
2
s + x
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Two relevant real xs -s have the form xs =
p
�n g(�n), g(�n) – analytical
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Perturbation theory for the saddle point

If we rescale xs =
p
�nx̃s

(or consider n � 1, �n - fixed instead of � ⌧ 1, �n - fixed)

x̃
2
s + �nx̃4s � 1 = 0 (12)

Can be solved perturbatively for �n ⌧ 1 and we obtain both relevant
saddle points!

Limit �n ⌧ 1 is applicable

In perturbation theory

In steepest descend

We can map these asymptotic methods with each other!
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Steepest descend answer as function of �, n

Saddle-point exponent

S(xs) =

p
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Second derivative
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Higher derivatives S (m)(xs) will contain / �nx�m
s – non-analytical in n
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Combining two approaches

Perturbation theory

An(�) = A
0
ne

F (�n)
� (1 + �G1(�n) + . . .) (16)

Steepest descend
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Asymptotic expansions must coincide at n � 1, � ⌧ 1 and all
non-analytical in n behavior is encoded in A

0
n.

Full perturbative answer can be obtained with A
0
n and steepest descend

method!
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Multiparticle production at threshold

We consider scalar field theory in 3 + 1 dimensions
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Our first aim is

A1!n = hn, E = nm|�̂(0)|0i, n � odd (19)
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Perturbation theory

Known results from the literature for perturbative expansion

A1!n = A
tree
1!n + �A1�loop

1!n + . . . (20)

Tree-level result [Brown, 1992]
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1-loop correction [ Voloshin, 1992 ]

A
1�loop
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1!nB(n � 1)(n � 3), B 2 C (22)

Renormalization conditions: A1�loop
1!1 , A1�loop

1!3 = 0
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Partial series resummation and low-energy corrections

Loop corrections to A1!n dependence on n [Argyres, 1993]

A1!n = A
tree
1!n(1 + #1�(n

2 + . . .) + #2�
2(n4 + . . .) + . . . (23)

Contributions / �k
n
2k can be resummed in all orders [Libanov et al., 1994]
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The same-type resummation exp(F1(�n)/�) as in toy model!
Energy corrections near the threshold are also exponential

[Libanov et al., 1994]
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Similarities between ��4 and the toy model

In the toy model

Perturbative An(�) is the
product of non-analytical in n

A
0
n and polynomial in all orders

Perturbation series can be
resummed into saddle-point
exponent exp(F (�n)/�),
pre-factor and other steepest
descend corrections for n � 1

In ��4

Perturbative A1!n is a product
of non-analytical in n A

tree
1!n and

a function with dominating term
/ �k

n
2k at k loops for n � 1

near the threshold

Perturbation series can be
partially resummed into an
exponent exp(F (�n, ")/�)

Maybe one can obtain perturbative A1!n using tree-level + semiclassics?
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Semiclassical approach at threshold

A1!n can be represented as a Cauchy-type integral for matrix element
between a coherent state |z0i and vacuum
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After rewriting this value in the path integral form redefinitions
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A1!n will have saddle-point form with factorized A
tree
1!n

What we know about semiclassical exponent and saddle-point �s?
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Semiclassical exponent from method of singular solutions

We consider inclusive probability at fixed multiplicity n and energy E
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Method of singular solutions [Son, 1995]

Ô is a few-particle operator that doesn’t a↵ect the exponent F
[Libanov et al., 1994]

Ô = exp
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�
R
d
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Find saddle-point solution �s with nonzero J

Calculate F (�n, ") on �s and extrapolate J ! 0

Method showed agreement with tree-level and resummed loop correction
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Numerical A1!n

In [Demidov, et at., 2023] we implemented method of singular solutions
numerically and obtained |A1!n|
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Typical dependence of exponent on �n

F ! �nf1(") + g1(") or Pn(E ) ! enf1(")+g1(")/� (31)

for all "

" = 3m
F

�n

The same behavior in anharmonic oscillator in QM

P
(QM)
n ⌘ |hn|Ô|0i|2 ⇠ exp (�⇡n) at n � O(��1

(QM)) (32)
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Scaling in the limit �n � 1

In the toy model An(�) ⇠
p
n! exp (↵n + �) as �n � 1.

For xs = (�n)1/4x̃s saddle-point equation becomes
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Some sort of scaling was obtained in ��4
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Some rescale of � + dilatation?
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Ultrarelativistic limit

Again

F ! �nf1(") + g1(") or Pn(E ) ! enf1(")+g1(")/� (35)

f 1

"/m

f1 ! �2/57± 0.06 as "/m = E
nm � 1 ! +1

Corresponds to some solution 's in massless �'4?
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Conclusions

Full loop corrections to multiparticle amplitudes in ��4 may be
obtained with tree-level + semiclassics
Check for two loops?

In the limit �n exponent behave as in QM and semiclassical solution
�s has scaling features
Some rescale of variables + perturbation theory?

Ultrarelativistic limit "/m ! 1 exists
Find corresponding saddle-point solution in massless theory?
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