Phase diagram of QCD and two colour QCD

XXII International Seminar on High Energy Physics, Quarks 2024 20-24 May 2024, Pereeslavl'-Zalessky

Russian Science Foundation

БАЗИС

Фонд развития теоретической физики и математики

K.G. Klimenko, IHEP T.G. Khunjua, University of Georgia, MSU

The work is supported by

► Russian Science Foundation (RSF)

 Foundation for the Advancement of Theoretical Physics and Mathematics

Фонд развития теоретической физики

Two main phase transitions

- ► confinement-deconfinement
- chiral symmetry breaking phase—chriral symmetric phase

QCD Phase Diagram

Two main phase transitions

- ► confinement-deconfinement
- chiral symmetry breaking phase—chriral symmetric phase

QCD Dhase Diagram

QCD at T and μ (QCD at extreme conditions)

- ► Early Universe
- ▶ heavy ion collisions
- ▶ neutron stars
- ▶ proto- neutron stars
- neutron star mergers

QCD Dhase Diagram and Approaches

QCD Dhase Diagram and Approaches

Methods of dealing with QCD

▶ Perturbative QCD

► First principle calculation - lattice QCD

QCD Dhase Diagram and Methods

Methods of dealing with QCD

- ▶ Perturbative QCD
- ▶ First principle calculation
 − lattice QCD
- ► Effective models
- ► DSE, FRG
- Gauge/Gravity duality (see talk by I. Aref'eva, A. Hajilou, K. Rannu)

. . . .

QCD Phase Diagram

QCD Phase Diagram

► Isotopic chemical potential µ_I

Allow to consider systems with isospin imbalance $(n_n \neq n_p).$

 Neutron stars, intermediate energy heavy-ion collisions, neutron star mergers

Figure: taken from Massimo Mannarelli

$$\frac{\mu_I}{2}\bar{q}\gamma^0\tau_3 q = \nu\left(\bar{q}\gamma^0\tau_3 q\right) \qquad n_I = n_u - n_d \quad \longleftrightarrow \quad \mu_I = \mu_u - \mu_d$$

Chiral imbalance

Chiral (axial) chemical potential

Allow to consider systems with chiral imbalance (difference between densities of left-handed and right-handed quarks).

$$n_5 = n_R - n_L$$
$$\mu_5 = \mu_R - \mu_L$$

The corresponding term in the Lagrangian is $\mu_5 \bar{q} \gamma^0 \gamma^5 q \label{eq:mass_star}$

Chiral magnetic effect: Isobar run

Even after Isobar run still no definitive conclusion on the presence or absence of CME in heavy-ion collisions

 $\mu_5^u \neq \mu_5^d$ and $\mu_{I5} = \mu_5^u - \mu_5^d$

Term in the Lagrangian

$$\frac{\mu_{I5}}{2}\bar{q}\tau_3\gamma^0\gamma^5q = \nu_5(\bar{q}\tau_3\gamma^0\gamma^5q)$$

 $n_{I5} = n_{u5} - n_{d5}, \qquad n_{I5} \quad \longleftrightarrow \quad \nu_5$

► Chiral isospin imbalance and chiral imbalance μ_{I5} and μ_5 can be generated in parallel magnetic and electric fileds $\vec{E} \parallel \vec{B}$

- Chiral imbalance could appear in dense matter
 - Chiral separation effect (the idea of Igor Shovkovy)
 - ► Chiral vortical effect

More external conditions to QCD

More than just QCD at (μ, T)

- more chemical potentials μ_i
- magnetic fields
 (see talk by A. Hajilou)
- rotation of the system Ω
 (see talk by G. Prokhorov)
- ▶ acceleration \vec{a}
- finite size effects (finite volume and boundary conditions)

More external conditions to QCD

More than just QCD at (μ, T)

- more chemical potentials μ_i
- magnetic fields (see talk by A. Hajilou)
- rotation of the system $\vec{\Omega}$ (see talk by G. Prokhorov)
- acceleration \vec{a}
- finite size effects (finite volume and boundary conditions)

Different chemical potentials and matter content

$$\mu = \frac{\mu_B}{3}, \quad \nu = \frac{\mu_I}{2}, \quad \mu_5, \quad \nu_5 = \frac{\mu_{I5}}{2}$$

Story of dualities

- ► QCD phase diagram has been considered in effective model of QCD, 3 color, without diquark condensation phenomenon
- Duality between CSB and PC has been found, 3 color, without diquark condensation phenomenon
- ► Phase diagram of QC₂D has been investigated.
- QCD phase diagram has been studied and color superconductivity phenomenon and interesting features has been revealed

Recall that in NJL model without color superconductivity phenomenon there have been found dualities

(It is not related to holography or gauge/gravity duality)

Chiral symmetry breaking \iff pion condensation

Isospin imbalance \iff Chiral imbalance

Duality in phase diagram

The TDP

$\Omega(T,\mu,\mu_i,...,\langle\bar{q}q\rangle,...) \qquad \qquad \Omega(T,\mu,\nu,\nu_5,...,M,\pi,...)$

Duality in phase diagram

The TDP

 $\Omega(T,\mu,\mu_i,...,\langle \bar{q}q\rangle,...)$

$$\Omega(T,\mu,\nu,\nu_5,...,M,\pi,...)$$

$$\mathcal{D}: M \longleftrightarrow \pi, \ \nu \longleftrightarrow \nu_5$$

Duality between chiral symmetry breaking and pion condensation

$$PC \longleftrightarrow CSB \quad \nu \longleftrightarrow \nu_5$$

lattice results show the catalysis (V. Braguta, A. Kotov, et al)
 But unphysically large pion mass

Duality \Rightarrow catalysis of chiral symmetry beaking

► Inhomogeneous phases (case)

 $\langle \sigma(x) \rangle = M(x), \quad \langle \pi_{\pm}(x) \rangle = \pi(x), \quad \langle \pi_{3}(x) \rangle = 0.$

Inhomogeneous phases and phase diagram are obtained just from duality

Details on uses of duality in Particles 2020, 3(1), 62-79

Two colour QCD case $\mathbf{QC}_2\mathbf{D}$

There are a lot similarities:

► similar phase transitions:

confinement/deconfinement, chiral symmetry breaking/restoration at large T and μ

► A lot of physical quantities coincide with some accuracy

Critical temperature, shear viscosity etc.

There is no sign problem in SU(2) case

$(Det(D(\mu)))^{\dagger} = Det(D(\mu))$

and lattice simulations at non-zero baryon density are possible

It is a great playground for studying dense matter

Catalysis of chiral symmetry beaking

catalysis of CSB by chiral imbalance:

- ▶ increase of $\langle \bar{q}q \rangle$ as μ_5 increases
- increase of critical temperature T_c of chiral phase transition (crossover) as μ_5 increases

V. Braguta, A. Kotov et al, JHEP 1506, 094 (2015), PoS LATTICE 2014, 235 (2015)

V. Braguta, A. Kotov et al, Phys. Rev. D 93, 034509 (2016), arXiv:1512.05873 [hep-lat]

Phase diagram of QC_2D

Possible phases and their Condensates

Condensates and phases

$$M = \langle \sigma(x) \rangle \sim \langle \bar{q}q \rangle, \qquad \text{CSB phase:} \quad M \neq 0,$$

$$\pi_1 = \langle \pi_1(x) \rangle = \langle \bar{q}\gamma^5 \tau_1 q \rangle, \qquad \text{PC phase:} \quad \pi_1 \neq 0,$$

$$\Delta = \langle \Delta(x) \rangle = \langle qq \rangle = \langle q^T C \gamma^5 \sigma_2 \tau_2 q \rangle, \qquad \text{BSF phase:} \quad \Delta \neq 0.$$

$$(b) \qquad \mathcal{D}_3: \quad \nu \longleftrightarrow \nu_5, \ M \longleftrightarrow \pi_1, \qquad \mathrm{PC} \longleftrightarrow \mathrm{CSB}$$

 $(c) \qquad \mathcal{D}_2: \quad \mu \longleftrightarrow \nu_5, \ M \longleftrightarrow |\Delta|, \quad \text{CSB} \longleftrightarrow \text{BSF}$

Structure of the phase diagram of two-color QCD 9

The phase diagram of (μ, ν, μ_5, ν_5)

The phase diagram is foliation of dually connected cross-section of (μ, ν, ν_5) along the μ_5 direction

One to one correspondence

- ▶ Baryon density $\mu \iff$ diquark condensation
- ▶ Isospin imbalance $\nu \iff$ pion condensation
- Chiral imbalance $\nu_5 \iff$ chiral symmetry breaking

Universal catalysis effect of chiral imbalance

Universal catalysis effect of chiral imbalance

Chameleon property (mimicry) of μ_5

Chameleon nature of chiral imbalance μ_5

 μ_5 mimics other chemical potentials μ , ν , ν_5

Universality of chiral imbalance μ_5

Chiral imbalance μ_5 does not participate in dual transformations

Dualities in the large values regime

Chiral imbalance μ_5 could universally trigger all the phenomena

Diquark condensation at $\mu = 0$

Chiral imbalance μ_5 leads to several rather peculiar phases in the system, e. g. the **diquark condensation** in the region of the phase diagram at $\mu = 0$

It was known that μ_5 leads to pion condensation in dense quark matter with zero $\nu = 0$ in SU(3) case and in SU(2) as well

 PC_d phase and color superconductivity phenomenon 17

Phase diagram of three color QCD:

Color superconductivity and

charged pion condensation in dense quark matter

In the early 1970s Migdal (Sawyer, Scalapino, Kogut, Manassah) suggested the possibility of **pion condensation in a nuclear matter**

A.B. Migdal, Zh. Eksp. Teor. Fiz. 61, 2210 (1971) [Sov. Phys. JETP 36, 1052 (1973)]; A. B.
 Migdal, E. E. Saperstein, M. A. Troitsky and D. N. Voskresensky, Phys. Rept. 192, 179 (1990).
 R.F. Sawyer, Phys. Rev. Lett. 29, 382 (1972); J. Kogut, J.T. Manassah, Physics Letters A, 41, 2, 1972, Pages 129-131

pion condensation with zero momentum (s-wave condensation) is highly unlikely to be realized in nature in matter of neutron star.

A. Ohnishi D. Jido T. Sekihara, and K. Tsubakihara, Phys. Rev. C80, 038202 (2009) . .

PC in dense baryonic matter, chiral limit

Figure: Pion condensate in dense quark matter in NJL model.

PC phenomenon is realized in dense baryonic matter with isospin imbalance

even in charge neutral and β -equilibrated case

K. G. Klimenko, D. Ebert
J.Phys. G32 (2006) 599-608;
Eur.Phys.J.C46:771-776,(2006)

physical point and electric neutrality

No PC condensation in the neutral case at the physical point

(H. Abuki, R. Anglani, M. Ruggieri etc. Phys. Rev. D **79** (2009) 034032. There are a number of **external parameters** such as **chiral imbalance** that can generate **PC in dense quark matter**.

See small review

Symmetry 2019, 11(6), 778 arXiv:1912.08635 [hep-ph]

Special Issue "Nambu-Jona-Lasinio model and its applications" of symmetry

(Thanks to Tomohiro Inagaki)

PC_d phase and diquark condensation

- PC_d phase has been predicted without possibility of diquark condensation
- Diquark condensation can take over the PC_d phase
- In two colour case diquark condensation is in a sense even stronger than in three colour case and starts from μ > 0

 PC_d phase is unaffected by BSF phase in two color case. Maybe one can infer that it is the case also for 3 color QCD

PC_d phase and color superconductivity phenomenon 24

 PC_d phase is unaffected by color superconducting phase in three color QCD.

PC_d phase and color superconductivity phenomenon 25

Even if one choose the chemical potentials in such a way that color superconducting phase and charged pion condensation with non-zero baryon phase overlap, PC_d phase is still ground state of the quark matter.

Phase diagram of three QCD and color superconductivity

the equations of motion for bosonic fields, which take the form

$$\sigma(x) = -2G(\bar{q}q), \quad \pi_a(x) = -2G(\bar{q}i\gamma^5\tau_a q),$$
$$\Delta_A(x) = -2H(\bar{q}c_i\gamma^5\tau_2\lambda_A q), \quad \Delta_A^*(x) = -2H(\bar{q}i\gamma^5\tau_2\lambda_A q^c)$$

the mesonic fields $\sigma(x)$, $\pi_a(x)$ are real quantities, i. e. $(\sigma(x))^{\dagger} = \sigma(x)$, $(\pi_a(x))^{\dagger} = \pi_a(x)$, but all diquark fields $\Delta_A(x)$ are complex scalars, so $(\Delta_A(x))^{\dagger} = \Delta_A^*(x)$.

Clearly, the real $\sigma(x)$ and $\pi_a(x)$ fields are color singlets, whereas scalar diquarks $\Delta_A(x)$ form a color antitriplet $\overline{3}_c$ of the SU(3)_c group. Note that the auxiliary bosonic field $\pi_3(x)$ corresponds to real $\pi^0(x)$ meson, whereas the physical $\pi^{\pm}(x)$ -meson fields are the following combinations of the composite fields, $\pi^{\pm}(x) = (\pi_1(x) \mp i\pi_2(x))/\sqrt{2}$. If some of the scalar diquark fields have a nonzero ground state expectation value, i. e. $\langle \Delta_A(x) \rangle \neq 0$, the color symmetry of the model is spontaneously broken down.

the Lagrangian and the effective action are invariant under the color $SU(3)_c$ group, hence the TDP depends on the combination

$$\Delta_2 \Delta_2^* + \Delta_5 \Delta_5^* + \Delta_7 \Delta_7^* \equiv \Delta^2,$$

where Δ is a real quantity.

There are only three order parameters

$$M = \langle \sigma(x) \rangle = -2G \langle \bar{q}q \rangle, \quad \pi = \langle \pi_1(x) \rangle = -2G \langle \bar{q}i\gamma^5 \tau_1 q \rangle,$$

$$\Delta = \langle \Delta(x) \rangle = -2H \langle \overline{q^c} i \gamma^5 \tau_2 \lambda_2 q \rangle$$

Possible phases and their Condensates

Condensates and phases

$$M = \langle \sigma(x) \rangle \sim \langle \bar{q}q \rangle \neq 0,$$
 CSB phase:

 $\pi = \langle \pi_1(x) \rangle = \langle \bar{q}\gamma^5 \tau_1 q \rangle \neq 0,$ PC phase: $\pi_1 \neq 0$

 $\Delta = \langle \Delta(x) \rangle = \langle qq \rangle \neq 0, \qquad \qquad \text{CSC phase:} \quad \Delta \neq 0$

Three color NJL model and diquark-diquark channel 30

$m_{\pi}, f_{\pi}, \langle \overline{q}q \rangle \longrightarrow$ quark-antiquark coupling G

${\cal H}$ is not precisely determined

If the quark-antiquark interaction has been constrained empirically, the most natural solution is to determine the quark-quark coupling constants empirically, too. Unfortunately, the analog to the meson spectrum would be a diquark spectrum, which of course does not exist in nature Three color NJL model and diquark-diquark channel 31

The most natural fit is

$$H = \frac{3}{4}G = 0.75G$$

from Fiertz transformor from reasonable value of condensate

But we can use 0 < H < G

Three color NJL model and diquark-diquark channel 32

If we one consider unphysical twice as strong diquark channel

$$H = \frac{3}{2}G = 1.5\,G$$

It will be very instructive later

Color superconductivity at finite chiral imbalance 33

Color superconductivity phenomenon demonstrates qualitatively the same behaviour as BSF in two color case Diquark condensation at $\mu = 0$ in SU(3)

Chiral imbalance μ_5 leads to the **diquark condensation** in the region of the phase diagram at $\mu = 0$ in three color case

Qualitative dual properties with color superconductivity phenomenon

in three color case

One can consider two regimes

• physical
$$H = \frac{3}{4}G = 0.75G$$
 or around

• unphysical
$$H = \frac{3}{2}G = 1.5G$$

Qualitative dual properties

Color superconductivity and charged pion condensation phenomena (PC and CSC phases) are qualitativelu dual to each other

One can consider two regimes

• physical
$$H = \frac{3}{4}G = 0.75G$$
 or around

• unphysical
$$H = \frac{3}{4}G = 1.5G$$

Qualitative dual properties

Gap equations are dual with respect to each other so the condensates

$$\frac{\partial F_1\left(M,\mu_i\right)}{\partial M} = 0$$

$$\frac{\partial F_{2}\left(\pi,\mu_{i}\right)}{\partial\pi}=0$$

$$\frac{\partial F_{3}\left(\Delta,\mu_{i}\right)}{\partial\Delta}=0$$

Dedonfinement transition in lattice two color QCD 41

Confinement/deconfinement transition was observed in two color case in lattice QCD

(Bornyakov, Braguta, Kotov et al.)

 Staggered fermions (tree level improved Symanzik gauge + rooted staggered fermion)

Dedonfinement transition in lattice two color QCD 42

 Wilson fermions - no deconfinement is found (Swansea group (Hands, Skullerud et al))

 confinement/deconfinement transition could be related to finite temperature effects

Dedonfinement transition in lattice two color QCD 43

 Japan group (Iida, K.; Itou, E et al)

 confinement/deconfinement transition could be observed at some non-zero temperature

Dualities \mathcal{D}_1 , \mathcal{D}_2 and \mathcal{D}_3 were found in

- In the framework of NJL model

- In the mean field approximation

Dualities are connected with Pauli-Gursey group

Dualities were found in

- In the framework of NJL model beyond mean field

- In QC_2D non-pertubartively (at the level of Lagrangian)

Duality ${\mathcal D}$ is a remnant of chiral symmetry

Duality was found in

- ▶ In the framework of NJL model beyond mean field or at all orders of N_c approximation
- In QCD non-pertubartively (at the level of Lagrangian)

- $(\mu_B, \mu_I, \nu_5, \mu_5)$ phase diagram with color superconductivity was studied in three color color case
- It was shown that there exist dualities in QCD and QC₂D
 Richer structure of Dualities in the two colour case
- ▶ Qualitative dualities in three color case
- Dualities have been shown non-perturbetively in the two colour case
- ▶ Duality has been shown non-perturbarively in QCD