Four-vector deformations of IIB supergravity solutions

work based on works
[2302.08749, 2011.11424]

Petrov Timophey
MIPT, Dolgoprudny, LHEP the talk was supported by the RSF grant 20-72-10144

\qquad

Holographic interpretation

Bivector transformation - hidden symmetry of solutions space of 10d supergravity

$$
\begin{align*}
(\mathrm{G}+\mathrm{B})^{-1} & =(\mathrm{g}+\mathrm{b})^{-1}+\beta \\
\beta^{\mathrm{mn}} & =\mathrm{k}_{\mathrm{a}}{ }^{\mathrm{m}} \mathrm{k}_{\mathrm{b}}{ }^{\mathrm{n}} \mathrm{r}^{\mathrm{ab}} \tag{1}
\end{align*}
$$

Backgrounds looks like $\mathrm{AdS}_{\mathrm{D}} \ltimes \mathrm{M}_{10-\mathrm{D}}$: duals to CFT deformations

Holographic interpretation

■ There are three possibilities:
1 All isometrics were taken through M: marginal deformations;
2 All isometrics were taken through AdS: non-commutativity;
3 Mixed case: dipole deformations.
■ In case of using of basic hidden symmetry of space of solutions of supergravity, isometrics of $\mathrm{M}_{10-\mathrm{D}}$ must to be commutative, thus acceptable only abelian deformations

$$
\left[\mathrm{k}_{\mathrm{a}}, \mathrm{k}_{\mathrm{b}}\right]=0
$$

■ U-duality (in following advanced) hidden symmetry of supegravity, allow us expand acceptable view of deformation

■ Advanced hidden symmetry allow non-abelian isometrics of compact space $\mathrm{M}_{10 \text { - }}$

$$
\left[\mathrm{k}_{\mathrm{a}}, \mathrm{k}_{\mathrm{b}}\right]=\mathrm{f}_{\mathrm{ab}}{ }^{c} \mathrm{k}_{\mathrm{c}}
$$

Holographic interpretation

Solution $\mathrm{AdS}_{\mathrm{D}+1} \times \mathrm{M}$ dual to D -dimensional gauge theory with symmetries:

- Conformal group SO(D,2): symmetry of AdS space
- Group of internal R-symmetry G: symmetry of M space

Examples:

- $\operatorname{AdS}_{5} \times \mathbb{S}^{5} \Longleftrightarrow \mathcal{N}=4, \mathrm{D}=4 \mathrm{SYM}$

■ $\mathrm{AdS}_{7} \times \mathbb{S}^{4} \Longleftrightarrow \mathcal{N}=(2,0), \mathrm{D}=6$ SCFT (non-lagrangian theory)
Polyvector deformations break symmetries, through that they taken:

- through AdS case: breaking of space-time symmetry of dual theory (non-commutativity and non-locality)
- through compact M space: breaking of super-symmetry (\equiv adding of new terms into lagrangian)

Non-abelian deformations

■ YB bi-vector transformation of vary solution with b-field
[Bakhmatov, Colgain, Sheikh-Jabbari, Yavatanoo (2018)]

$$
\begin{equation*}
(G+B)^{-1}=(g+b)^{-1}+\beta \tag{2}
\end{equation*}
$$

■ Necessary to define

$$
\begin{align*}
{\left[\mathrm{k}_{\mathrm{a}}, \mathrm{k}_{\mathrm{b}}\right] } & =\mathrm{f}_{\mathrm{ab}}{ }^{\mathrm{c}} \mathrm{k}_{\mathrm{c}} & & \text { (algebra of symmetries) } \\
\beta^{\mathrm{mn}} & =\mathrm{k}_{\mathrm{a}}{ }^{\mathrm{m}} \mathrm{k}_{\mathrm{b}}{ }^{\mathrm{n}} \mathrm{r}^{\mathrm{ab}} & & \text { (bi-vector anzatz); } \\
\mathrm{r}^{\mathrm{b}_{1}\left[\mathrm{a}_{1}\right.} \mathrm{r}^{\left|\mathrm{b}_{2}\right| \mathrm{a}_{2}} \mathrm{f}_{\mathrm{b}_{1} \mathrm{~b}_{2}}{ }^{\left.\mathrm{a}_{3}\right]} & =0 & & \text { (classical YB equation); } \tag{3}\\
\mathrm{r}^{\mathrm{b}_{1} \mathrm{~b}_{2}} \mathrm{f}_{\mathrm{b}_{1} \mathrm{~b}_{2}}{ }^{\mathrm{a}} \mathrm{k}_{\mathrm{a}}{ }^{\mathrm{m}} & =\mathrm{I}^{\mathrm{m}}=0 & & \text { (unimodularity); }
\end{align*}
$$

In case of compact isometrics:
■ Abelian $\mathfrak{u}(1)^{\mathrm{n}}: \quad \mathrm{f}_{\mathrm{ab}}{ }^{\mathrm{c}}=0 \quad \Longrightarrow \quad \forall \mathrm{r}_{\mathrm{ab}}$

■ Non-abelian (SU(N), SO(N), ...): $\quad \mathrm{r}_{\mathrm{ab}} \equiv 0$
[Lichnerowicz, Medina (1988), Pop, Stolin (2007)]

Generalization of the classical Yang-Baxter equation in 11d

 case■ In previously works were showed, that advanced hidden symmetry is part of space of solutions of 11 d supergravity equations [Hohm, Samtleben]
■ It's parameterized by trivector, spanned on Killing vectors of init solution

$$
\begin{align*}
& \Omega^{m n k}=\rho^{[a 1 a 2 a 3]} k_{a_{1}}^{m} k_{a_{2}}^{n} k_{a_{3}}^{k}, \quad r^{b_{1} b_{2} b_{3}} f_{b_{2} b_{3}}{ }^{{ }^{a}} k_{a}{ }^{m} k_{b_{1}}{ }^{n}=I^{m n}=0 \\
& \rho^{a_{1}\left[a_{2}\left|a_{6}\right|\right.} \rho^{a_{3} a_{4}\left|a_{5}\right|} f_{a_{5} a_{6}}^{\left.a_{7}\right]}-\rho^{a_{2}\left[a_{1}\left|a_{6}\right|\right.} \rho^{a_{3} a_{4}\left|a_{5}\right|} f_{a_{5} a_{6}} a_{7}{ }^{\left.a_{7}\right]}=0 . \tag{4}
\end{align*}
$$

[Sakatani, Blair, Malek, Thompson, Colgain, Deger, Sheikh-Jabbari, Bakhmatov, Gubarev, Musaev]
■ Turn out, that in front of bi-vector case, exists non-trivial solutions in case of compact isometrics:

$$
\begin{equation*}
\hat{\Omega}_{1}=\mathrm{a} \mathrm{E}_{2} \wedge \mathrm{~F}_{2} \wedge\left(\mathrm{H}_{1}-\mathrm{H}_{2}\right)+\mathrm{a} \mathrm{E}_{4} \wedge \mathrm{~F}_{4} \wedge\left(\mathrm{H}_{1}+\mathrm{H}_{2}\right) \tag{5}
\end{equation*}
$$

[Musaev, Petrov]
■ Such success gave inspiring for us to try find how advanced hidden symmetry looks like into case of more interesting in holographic context case 10d supergravity

Generalization of the Yang-Baxter equation in IIB case

■ In previously works were showed, that advanced hidden symmetry is part of space of solutions of 10 d supergravity equations [Hohm, Samtleben]
■ In case of 10d IIB supergravity turn out, that advanced hidden symmetry in case of IIB supergravity parameterized by full-antisymmetrised four-vector:

$$
\begin{equation*}
\Omega^{\mathrm{mnkl}}=\rho^{\mathrm{i}_{1} \mathrm{i}_{2} \mathrm{i}_{3} \mathrm{i}_{4}} k_{\mathrm{i}_{1}}^{\mathrm{m}} \mathrm{k}_{\mathrm{i}_{2}}^{\mathrm{n}} k_{\mathrm{i}_{3}}^{\mathrm{k}} \mathrm{k}_{\mathrm{i}_{4}}^{1} \tag{6}
\end{equation*}
$$

■ Enough conditions on coordinates of four-vector for generation of IIB solution from IIB solution

Linear conditions: IIB analogue of unimodularity condition

$$
\begin{equation*}
\rho^{\left[a_{1} a_{2}\left|a_{3} a_{4}\right|\right.} f_{a_{3} a_{4}}{ }^{\left.a_{5}\right]}=0 . \tag{7}
\end{equation*}
$$

Quadratic condition:Generalization of the classical Yang-Baxter equation in case of four-vector

$$
\begin{equation*}
\rho^{\left[a_{1} a_{2}\left|a_{3} a_{4}\right|\right.} \rho^{\left.a_{5} a_{6} a_{7}\right] a_{8}} f_{a_{3} a_{8}}{ }^{a_{9}}-3 \rho^{\left[a_{1} a_{2}\left|a_{3} a_{4}\right|\right.} \rho^{a_{5} a_{6}\left|a_{9} a_{8}\right|} f_{a_{3} a_{8}}{ }^{\left.a_{7}\right]}=0 . \tag{8}
\end{equation*}
$$

Deformation of $\mathrm{AdS}_{5} \times \mathbb{S}^{5}$

Consider solution in view $\mathrm{M}_{5} \times \mathrm{N}_{5}$ with

$$
\begin{align*}
& \mathrm{ds}^{2}=\mathrm{e}^{\phi(\mathrm{y})} \underbrace{g_{\mu \nu} d x^{\mu} d x^{\nu}}_{\mathrm{AdS}_{5}}+\underbrace{\mathrm{gmn}_{\mathrm{mn}} \mathrm{dy} \mathrm{~m}^{\mathrm{m}} \mathrm{dy}^{\mathrm{n}}}_{\mathbb{S}^{5}}, \\
& C_{S_{5}}=\frac{1}{4!} C_{\text {mnkl }}(y) d y^{m} \wedge d y^{n} \wedge d y{ }^{k} \wedge d y^{1}, \tag{9}\\
& \mathrm{C}_{\mathrm{AdS}_{5}}=\frac{1}{4!} \mathrm{C}_{\mu \nu \kappa \lambda}(\mathrm{x}) \mathrm{d} x^{\mu} \wedge \mathrm{d} \mathrm{x}^{\nu} \wedge \mathrm{dx}^{\kappa} \wedge \mathrm{dx}^{\lambda}
\end{align*}
$$

■ Examples of supersymmetric deformations of $\operatorname{AdS}_{5} \times \mathbb{S}_{5}$ through AdS isometrics were found early in [Maldacena, Lunin (2005)]
■ Solution $\mathrm{AdS}_{5} \times \mathbb{S}^{5}$ corresponds to anzats and dual to $\mathcal{N}=4, \mathrm{D}=4 \mathrm{SYM}$

Results for $\mathrm{SO}(6)$ group

- gCYBE on SO(6) is very difficult object, and SO(6) were reduced to $\mathrm{SO}(4) \times \mathrm{U}(1)$

■ Were found family of real solutions of four-vector gCYBE on $\operatorname{SO}(4) \times \mathrm{U}(1)$:

$$
\begin{equation*}
\hat{\Omega}=\mathrm{a}\left(\mathrm{E}_{2} \wedge \mathrm{~F}_{2} \wedge\left(\mathrm{H}_{1}-\mathrm{H}_{2}\right)+\mathrm{E}_{4} \wedge \mathrm{~F}_{4} \wedge\left(\mathrm{H}_{1}+\mathrm{H}_{2}\right)\right) \wedge \mathrm{H}_{3} \tag{10}
\end{equation*}
$$

where $\mathrm{E}, \mathrm{F}, \mathrm{H}-$ abstract vectors of $\mathrm{SO}(4) \times \mathrm{U}(1)$

- View in terms of Killing vectors of \mathbb{S}^{5} part of initial metric:

$$
\Omega=\left(\mathrm{a}_{1}+\mathrm{a}_{2}\right)\left(\rho^{2}+\sigma^{2}\right)\left(\frac{1}{\rho} \partial_{\rho}-\frac{1}{\sigma} \partial_{\sigma}\right) \wedge \partial_{\phi} \wedge \partial_{\psi} \wedge \partial_{\alpha}
$$

where were used following coordinates:

$$
\begin{array}{ll}
y^{1}=\rho \cos \phi, & y^{3}=\sigma \cos \psi \\
y^{2}=\rho \sin \phi, & y^{4}=\sigma \sin \psi, \tag{11}\\
y^{5}=\sqrt{r^{2}-\rho^{2}-\sigma^{2}} \cos \alpha, & y^{6}=\sqrt{r^{2}-\rho^{2}-\sigma^{2}} \sin \alpha,
\end{array}
$$

where $\phi, \psi, \alpha \in[0,2 \pi]$ and $\rho^{2}+\sigma^{2} \leq r^{2}$.

Results

Four-vector deformation of $\mathrm{AdS}_{5} \times \mathbb{S}^{5}$ on sphere isometries:

$$
\begin{align*}
& \begin{array}{c}
d s^{2}=K \lambda^{2} r_{+}^{6}\left(r_{+}^{2}-1\right){ }^{2} R^{2}\left(-d \alpha^{2}+\frac{1}{2} r_{-}^{2} d \psi_{-} d \psi_{+}+\frac{1}{4} r_{+}^{2} d \psi_{-}^{2}+\frac{1}{4} r_{+}^{2} d \psi_{+}^{2}+\right. \\
+\frac{r_{-}^{2} r_{+}^{2}\left(r_{+}^{2}-1\right)}{r_{-}^{4}-r_{+}^{4}} d r_{-}^{2}-\frac{4\left(400 r_{+}^{2}\left(r_{+}^{4}-r_{-}^{4}\right) \psi_{+}^{2}+\left(r_{+}^{2}-1\right) r_{-}^{4}\right)}{\left(r_{+}^{4}-r_{-}^{4}\right)\left(r_{+}^{2}-1\right)^{2}} d r_{+}^{2}- \\
\left.-\frac{8 r_{-}^{3} r_{+}}{\left(r_{+}^{2}-1\right)\left(r_{+}^{4}-r_{-}^{4}\right)} d r_{+} d r_{-}+40 \frac{d r_{+} \psi_{+}\left(d \psi_{-} r_{-}^{2}+d \psi_{+} r_{+}^{2}\right)}{r_{+}^{3} \lambda\left(r_{+}^{2}-1\right)^{2}}\right)+K^{2} d s^{2}\left(A d S^{5}\right) \\
F_{5}\left(M^{5}\right)=\frac{4}{5 R} K\left(20 K-\lambda r_{+}^{2}(3 K-2)\left(4 r_{+}^{2}-3\right)\right) d V o l\left(S_{5}\right) \\
F_{5}\left(A d S_{5}\right)=\frac{K^{3}}{20}\left(20 K-\frac{\sqrt{1-K}(3 K-2)\left(4 r_{+}^{2}-3\right)}{r_{+} \sqrt{r_{+}^{2}-1}}\right) d V o l\left(A d S_{5}\right)
\end{array} \\
& \text { where } r_{ \pm}^{2}=\frac{1}{R^{2}}\left(\rho^{2} \pm \sigma^{2}\right), \psi_{ \pm}=\phi \pm \psi, K=1+\frac{\lambda^{2}}{R^{8}}\left(\rho^{2}+\sigma^{2}\right)^{3}\left(R^{2}-\rho^{2}-\sigma^{2}\right)
\end{align*}
$$

Summary and discussion

- For IIB supergravity were found new type of deformation of space of solutions by four vector, and found conditions on it
- In following try to find full solution of conditions on four-vector on \mathbb{S}^{5} isometries
- Find precisely view of new deformations of $\mathrm{AdS}_{5} \times \mathbb{S}^{5}$ that will be corresponds to non-supersymmetric conform manifold

Thanks for your attention！

