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Motivation: what is quench

Quench is a controllable way to create a nonequlibrium state from known equilibrium one.

O(t)

tq t

old equilibrium

new equilibrium

quench

▶ GLOBAL QUENCH - the process of sudden changes of the parameters of the entire
system.

▶ LOCAL QUENCH - the system is perturbed in the vicinity of some point xq by the

action of the operator Q̂(xq)



Motivation: already known results (CFT)

▶ State after local quench

|ψ(tq + 0)⟩ = N e−ϵĤ Q̂(xq)|0⟩.

▶ Average value of observable
⟨Ô⟩t = ⟨ψ(t)|Ô|ψ(t)⟩

▶ Using analytical continuation from the euclidean time (Ô(τ) = eτ Ĥ Ôe−τ Ĥ)

⟨Ô⟩t =
⟨0|Q̂†(ϵ, xq)Ô(τ)Q̂(−ϵ, xq)|0⟩

⟨0|Q̂†(ϵ, xq)Q̂(−ϵ, xq)|0⟩

∣∣∣∣∣
τ→it

▶ If Q̂ is a primary operator with dimensions (h, h̄) and Ô is an energy density
P. Caputa, M. Nozaki, T. Takayanagi, Prog. Theor. Exp. Phys. 2014, 093B06 (2014)

δε(τ, x) =
2hϵ2

π(xq − x − iϵ− iτ)2(xq − x + iϵ− iτ)2

+
2h̄ϵ2

π(xq − x + iϵ+ iτ)2(xq − x − iϵ+ iτ)2
.



Motivation: problem under consideration

▶ Consider a local perturbation of the system at space point xq at time tq ( a local
quench) with the operator:

Q̂(xq) = e−i αℏ V (φ̂s (xq)),

ρ̂(t0) → ρ̂Q(tq , xq) = Q̂(xq)ρ̂(tq)Q̂
†(xq)

▶ V (φ̂(xq)) - some potential (for this talk φ̂n(xq)).
▶ Field operator φ̂s(xq) =

∫
dxη(x− xq)φ̂(x) is "smeared"in the vicinity of point xq in

order to deal with the problem of products of field operators in coinciding points.
▶ "Smearing"function η(x − xq) is a smooth function that is non-zero only in a small

vicinity of the point xq .
▶ Dimensional parameter α describes the magnitude of the perturbation.



Motivation: problem under consideration

Local quench can be described as the additional term of the Hamiltonian
δĤ(t) = αδ(t − tq)V (φ̂s(xq)).

Quench with αV (φ̂s(xq)) = g φ̂4
s (xq) corresponds to the instantaneous

appearance of interaction in the system at point xq.
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Keldysh technique: semiclassical approximation

General form of an average of observable O at time t in Keldysh technique:

⟨O[φ̂(x)]⟩t = tr(Ô(φ̂)ρ(t)) =∫
DΠ(x)DΦ(x) W[Φ(x),Π(x)]

∫
i.c.

Dφcl (t, x)

∫
Dφq(t, x)O[φcl (t, x)]e

i
ℏ SK [φcl ,φq ].

here “classical” φcl and “quantum” φq fields:

φcl (x) =
1
2
(φF (x) + φB(x)) , ℏφq(x) = φF (x)− φB(x).

An integral with i .c. means integration with initial conditions φcl (t0, x) = Φ(x), ∂tφcl (t0, x) =

Π(x).



Keldysh technique: semiclassical approximation

Wigner functional is expressed through the initial density matrix of the system; thereby, it
defines the properties of this system at the initial time t0:

W [Φ(x),Π(x)] =

∫
Dβ(x)e i

∫
dd−1xβ(x)Π(x)⟨Φ(x) +

ℏ
2
β(x)|ρ̂(t0)|Φ(x)−

ℏ
2
β(x)⟩.

For the scalar theory:

S =
1
2

∫
ddx

(
∂µφ(x)∂

µφ(x)−m2φ2(x)−
g

2
φ4(x)

)
.

Keldysh action is:

SK [φcl , φq ] = −ℏ
∞∫

t0

dt

∫
dd−1 x

(
φqA[φcl ] +

gℏ2

4
φclφ

3
q

)
,

Here A[φcl ] = (∂µ∂µ +m2)φcl + gφ3
cl is EoM. It selects fields on the classical trajectories.



Keldysh technique: semiclassical approximation

Semiclassical expansion:

e
−i gℏ

2
4

∞∫
t0

dt
∫
dd−1 xφclφ

3
q

= 1︸︷︷︸
LO

− i
gℏ2

4

∞∫
t0

dt

∫
dd−1 x φclφ

3
q

︸ ︷︷ ︸
NLO

+ · · ·

LO → Classical Statistical Approximation, Classical method. After integration over fields φq

и φc :

⟨O[φ̂(x)]⟩t =
∫

DΦ(x)DΠ(x)W [Φ(x),Π(x)]O[ϕc (t, x)],

where ϕc is the solution of the classical equation of motion:
(
∂µ∂µ +m2)ϕc + gϕ3

c = 0 with
the initial values: ϕc (t0, x) = Φ(x), ∂tϕc (t0, x) = Π(x).

The method: Find classical trajectory and average over all possible initial conditions with the

weight given by the Wigner functional.



Keldysh technique: semiclassical approximation
Introduce notation for averaging over initial conditions as∫

DΦ(x)DΠ(x)W [Φ(x),Π(x)](. . . ) ≡ ⟨. . . ⟩i.c.,

so the average for the Classical Approximation can be rewritten as:

⟨O[φ̂(x)]⟩t = ⟨O[ϕc (t, x)]⟩i.c.. (1)

The semiclassical expansion in the Keldysh technique is constructed using the parameter ℏ2g :

SK [φcl , φq ] = −ℏ
∞∫

t0

dt

∫
dd−1 x

(
φqA[φcl ] +

gℏ2

4
φclφ

3
q

)
,

therefore for a noninteracting system g=0,

the classical approximation gives an exact answer!



Quench

Density matrix after quench: ρ̂(t0) → ρ̂Q(tq , xq) = Q̂(xq)ρ̂(tq)Q̂†(xq)
Then the Wigner functional after local quench:

WQ [Φ(x),Π(x)] =

∫
Dβ(x)e i

∫
dd−1 x β(x)Π(x)⟨Φ(x)+

ℏ
2
β(x)|Q̂(xq)ρ̂(t0)Q̂

†(xq)|Φ(x)−
ℏ
2
β(x)⟩.

Note, that

β(y)e i
∫
dd−1 x β(x)Π(x) = −i

δ

δΠ(y)
e i

∫
dd−1 x β(x)Π(x)

So,

WQ [Φ(x),Π(x)] = Q
(
Φs ,

δ

δΠs

)
W [Φ(x),Π(x)],

where

Q
(
Φs,

δ

δΠs

)
= e

−i αℏ

(
V
(
Φs−i ℏ2

δ
δΠs

)
−V
(
Φs+i ℏ2

δ
δΠs

))
,

Φs =

∫
dd−1 x η(x− xq)Φ(x),

δ

δΠs
=

∫
dd−1 x η(x− xq)

δ

δΠ(x)
.



Quench

Then, after functional integration by parts

⟨Ô⟩Qt =

∫
DΦ(x)DΠ(x)W [Φ(x),Π(x)] Q

(
Φs, -

δ

δΠs

)
O[ϕc (t,Φ(x),Π(x))].

In order to find the average of the operator after quench, it is necessary to perform integration

over the initial conditions with the original Wigner functional, but for a modified observable.



Quench: example

▶ Quench: Local sudden change of mass

Q̂(xq) = e−i αℏ φ̂2
s (xq)

Q
(
Φs, -

δ

δΠs

)
= e

2αΦs · δ
δΠs

▶ Observable: Energy density

ε(t, x) =
1
2
(∂tφ)

2 +
1
2
(∂xφ)

2 +
1
2
m2φ2.

▶ Solution of EoM Φ(x) = ϕc (0, x),Π(x) = ∂tϕc (0, x):

ϕc (t, x) = −
∫

dy
(
∂tGR(t, x − y)Φ(y) + GR(t, x − y)Π(y)

)
.

Retarded Green function is defined from the retarded solution of equation:

(∂2
t − ∂2

x +m2)GR(t, x − x ′) = −δ(t)δ(x − x ′),

GR(t, x − x ′) = −θ(t)
∫

dp

2π
sin(ωpt)

ωp
e−ip(x−x′), ωp =

√
p2 +m2.



Quench: example

▶ Averaging over initial conditions:

Retarded Green function does not depend on the initial conditions, so the average of
the classical solutions ϕc is performed with the Keldysh Green function:

iGK (t − t′, x − x ′) = ⟨ϕc (t, x)ϕc (t′, x ′)⟩i.c. =
1
2
tr
(
ρ̂(t0){φ̂(t, x), φ̂(t′, x ′)}

)
.

Define the "smeared" Keldysh Green Function G s
K (t, x) and the constant ⟨Φ2

s ⟩i.c :

⟨ϕc (t, x)Φs⟩i.c = iG s
K (t, x) ≡∫

dy η(y − xq)iGK (t, x − y),

⟨Φ2
s ⟩i.c ≡

∫
dydz η(y − xq)η(z − xq)iGK (0, y − z).



Quench: example

Energy density after quench:

⟨ε̂⟩Qt = ⟨ε̂⟩t − 2iα
(
m2G s

K (t, x)G
s
R(t, x) + ∂tG

s
K (t, x)∂tG

s
R(t, x) + ∂xG

s
K (t, x)∂xG

s
R(t, x)

)
+2α2⟨Φ2

s ⟩i.c
(
m2(G s

R(t, x)
)2

+
(
∂tG

s
R(t, x)

)2
+
(
∂xG

s
R(t, x)

)2)
.

Note: Energy density is a real, the imaginary unity is included in the definition of the Keldysh
Green function.

The Keldysh Green function is singular at coinciding points. However, the constant ⟨Φ2
s ⟩i.c is

regularised with the help of the "smearing" function η(x − xq). This function was introduced

in the quench definition exactly to eliminate such a divergence. Its physical meaning is that

the energy is released not exactly at the point xq , but in a certain vicinity specified by the

“smearing” function. Therefore, the final answer depends on this function and diverges if it

approaches the delta-function.



Quench: example

Energy density after quench:

⟨ε̂⟩Qt = ⟨ε̂⟩t − 2iα
(
m2G s

K (t, x)G
s
R(t, x) + ∂tG

s
K (t, x)∂tG

s
R(t, x) + ∂xG

s
K (t, x)∂xG

s
R(t, x)

)
+2α2⟨Φ2

s ⟩i.c
(
m2(G s

R(t, x)
)2

+
(
∂tG

s
R(t, x)

)2
+
(
∂xG

s
R(t, x)

)2)
.

▶ α0 Energy density before quench
▶ α1 Linear response of the system to a local disturbance. Describes the redistribution of

energy between different parts of the system and does not contribute to the total
energy absorbed by the system.

▶ α2 Shows the energy absorbed by the system after quench. If Keldysh Green function is
described by a single-particle distribution function fp , for the free theory:

iGK (t, x − x ′) = ℏ
∫

dp

2π
cos(ωpt)

2ωp
(2fp + 1)e−ip(x−x′).

then the total energy that the system received after the quench:

δE =

∫
dx
(
⟨ε̂⟩Qt − ⟨ε̂⟩t

)
= 2α2⟨Φ2

s ⟩i.c
∫

dyη2(y) ∼
1
ϵ
log

(
min

(
Λ, ϵ−1)
m

)



Quench: energy density
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The thermal state with temperatures
T = 0 (a,c) and T = 1.5m (b,d) .
The "smearing" function is Gaussian
with a width of ϵm = 0.25 (a,b) and
ϵm = 2 (c,d).
Maximum momentum of particles
created during quench pmax ∼ 1

ϵ
,

maximum group velocity of particles :

vmax =
∂ωp

∂p
∼

pmax√
p2

max +m2

∼
1

√
1 +m2ϵ2

Front propagation:
ϵ≪ m−1 → vmax ∼ 1

ϵ≫ m−1 → vmax ∼ 1
mϵ



Connection with CFT

Consider the vertex operator Q̂(x) = V̂α(x) =: e iαφ̂(x) : with conformal dimensions
h = h̄ = α2/(8π)

For Keldysh technique
▶ Potential V (φ) = −φ
▶ Vacuum initial state T = 0 (fp = 0)

▶ "Smearing" function ( |ψ0⟩ = N e−ϵĤ : e iαφ̂(xq) : |0⟩ = e iαφ̂s (xq)|0⟩)

η(x) =

∫
dp

2π
e ipx−ϵωp =

mϵ

π
√
x2 + ϵ2

K1

(
m
√

x2 + ϵ2
)
,

where Kν(z) is the MacDonald function, and ϵ – is the small parameter (the width of
the "smearing" function).

▶ Energy density (very simple, noGK (t, x))

⟨ε̂⟩Qt = ⟨ε̂⟩t +
1
2
α2
(
m2(G s

R(t, x)
)2

+
(
∂tG

s
R(t, x)

)2
+
(
∂xG

s
R(t, x)

)2)
.



Connection with CFT
▶ Smeared retarded Green function

G s
R(t, x) =

∫
dy η(y − xq)GR(t, x − y) = −θ(t)

∫
dp

2π
sin(ωpt)

ωp
e−ip(x−xq)−ϵωp

=
i

2π
θ(t)

(
K0

(
m
√

(x − xq)2 + (ϵ− it)2
)

− K0

(
m
√

(x − xq)2 + (ϵ+ it)2
))

.

▶ For m → 0

G s
R(t, x) =

i

4π
log

(
(x − xq)2 + (ϵ+ it)2

(x − xq)2 + (ϵ− it)2

)

▶ Energy density after the local quench :

⟨ε̂⟩Qt = ⟨ε̂⟩t +
α2

4π2

(
ϵ2

((x − xq − t)2 + ϵ2)2
+

ϵ2

((x − xq + t)2 + ϵ2)2

)
.



Motivation: already known results (CFT)

▶ State after local quench

|ψ(tq + 0)⟩ = N e−ϵĤ Q̂(xq)|0⟩.

▶ Average value of observable
⟨Ô⟩t = ⟨ψ(t)|Ô|ψ(t)⟩

▶ Using analytical continuation from the euclidean time (Ô(τ) = eτ Ĥ Ôe−τ Ĥ)

⟨Ô⟩t =
⟨0|Q̂†(ϵ, xq)Ô(τ)Q̂(−ϵ, xq)|0⟩

⟨0|Q̂†(ϵ, xq)Q̂(−ϵ, xq)|0⟩

∣∣∣∣∣
τ→it

▶ If Q̂ is a primary operator with dimensions (h, h̄) and Ô is an energy density
(h = h̄ = α2/(8π))

δε(τ, x) =
2hϵ2

π(xq − x − iϵ− iτ)2(xq − x + iϵ− iτ)2

+
2h̄ϵ2

π(xq − x + iϵ+ iτ)2(xq − x − iϵ+ iτ)2
.



Conclusions
▶ We propose a new approach for the description of a local perturbation (quench) in

scalar field theory with the help of the Keldysh technique. This approach does not use
the analytical continuation procedure, which in some cases may be ambiguous.
Moreover, the method presented in the work allows to consider systems with an
arbitrary initial state.

▶ For the quench Q̂(xq) = e−i αℏ φ̂2
s (xq), the evolution of the energy density was calculated

for both the vacuum initial state and the state with an arbitrary initial distribution
function fp . Two regimes of propagation of the disturbance front are described,
depending on the size of the local disturbance region (the width of the “smearing”
function ϵ).

▶ The approach to the description of the dynamics of a system after an instantaneous
local perturbation obtained in this work can be generalised to the case of nonzero
interaction, at least for the semiclassical approximation within the Keldysh technique.
This is a topic for further investigation.

More details: А.А.Р., А.Г. Семенов, Письма в ЖЭТФ 118, 921 (2023)


