# Secular effects in de Sitter space

QUARKS-2024

Damir Sadekov 22 May, 2024

Moscow Institute of Physics and Technology



- It is believed that in early Universe quantum corrections played the dominant role;
- De Sitter space is the simplest example to investigate effects of QFT in early Universe;
- Non-conformal quantum fields in dS show special IR behaviour: loops are not suppressed in comparison with tree-level contributions;
- The dream is to solve the problem of backreaction of quantum matter onto the ambient expanding background;
- We need to research the infrared effects from loops and their interrelation with stability of dS-invariant states, stability of dS itself and its isometries.



• The secular growth of the first kind for massless scalars and tachyonic fields:

$$W_{\text{tree+loops}} = \left\langle \phi^2(t, x) \right\rangle \simeq tA_0 + \lambda t^3 A_1 + \dots,$$
  
$$ds^2 = dt^2 - e^{2t} dx^2.$$
(1)

[Starobinsky, Yokoyama(82,94), Linde(82), etc.]

- Here A<sub>0</sub> tree-level contribution, A<sub>1</sub> the first loop correction, λ self-coupling constant of the scalar;
- Methods to approach this secular growth work only in EPP for small enough perturbations over the Bunch-Davies state.



• The secular growth of the second kind for scalars of arbitrary mass:

$$W_{\text{loop}}(t_1, t_2 | p) \simeq \lambda^2 (t_1 - t_2) B,$$

$$W_{\text{loop}}(t_1, t_2 | p) = \int d^{D-1} \mathbf{x} e^{i \mathbf{p} \mathbf{x}} \left\langle \phi(t_1, \mathbf{x}) \phi(t_2, 0) \right\rangle.$$
(2)

[Boyanovsky, Vega, Holman(94), Vega, Salgado (97), etc.]

- Such terms become strong in the limit  $|t_1 t_2| \rightarrow \infty$  and usually leads to a mass renormalization or to contribution to the imaginary part of the self-energy;
- This effect cannot be definitely attributed to the IR effects.



• The secular growth of the third kind for scalars of arbitrary mass:

$$W_{\text{loop}}(t_1, t_2 | p) \simeq \lambda^2 (t_1 + t_2) C \sim \lambda^2 \log(\sqrt{\eta_1 \eta_2}),$$
  
where  $\eta = e^{-t}$  in EPP and  $\eta = e^t$  in CPP. (3)

[Krotov, Polyakov(11), Akhmedov(12,13), Akhmedov, Burda(12), etc.]

• This effect is crucial in the natural limit  $|\frac{t_1+t_2}{2}| \rightarrow \infty$ ,  $t_1 - t_2 = \text{const.}$ 



#### Types of secular effects

• Finally, the fourth type is secular divergence, which takes place in CPP and in Global dS:

$$W_{\text{loop}}(t_1, t_2 | p) \simeq \lambda^2 (t - t_0) F \sim \lambda^2 \log(rac{\eta}{\eta_0}),$$
  
where  $t = rac{t_1 + t_2}{2}, \ \eta = \sqrt{\eta_1 \eta_2}.$  (4)

[Krotov, Polyakov(11), Akhmedov(13), Akhmedov, Moschella, Pavlenko, Popov(17)]

- The dS isometry group is broken at loop level, the limit  $t_0 \rightarrow -\infty$  is impossible;
- One question is the possibility of  $t_0 \rightarrow -\infty$  after the resummation;
- The 3<sup>rd</sup> and 4<sup>th</sup> types have the same origin, but the resummation in these two cases are physically distinct problems.



• First, let us consider scalar field of mass  $m < \frac{D-1}{2}$  with cubic self-interaction:

$$S[\phi] = \int d^D x \sqrt{|g|} \left[ g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - m^2 \phi^2 - \frac{\lambda}{6} \phi^3 \right].$$
(5)

• Quantization:

$$\phi(\eta, \mathbf{x}) = \int \frac{d^{D-1} \mathbf{p}}{(2\pi)^{D-1}} \left[ \widehat{a}_{\mathbf{p}} f_{\mathbf{p}}(\eta) e^{i\mathbf{p}\mathbf{x}} + \widehat{a}_{\mathbf{p}}^{\dagger} f_{\mathbf{p}}^{*}(\eta) e^{-i\mathbf{p}\mathbf{x}} \right], \quad \left[ \widehat{a}_{\mathbf{p}}, \widehat{a}_{\mathbf{q}}^{\dagger} \right] = (2\pi)^{D-1} \delta(\mathbf{p} - \mathbf{q}),$$
$$f_{\mathbf{p}}(\eta) = \eta^{\frac{D-1}{2}} h_{\nu}(p\eta), \quad p \equiv |\mathbf{p}|,$$
$$h_{\nu}(p\eta) = \frac{\sqrt{\pi}}{2} H_{\nu}^{(1)}(p\eta), \quad \nu = \sqrt{\frac{(D-1)^{2}}{4} - m^{2}}.$$
(6)



• Keldysh rotation:

$$\phi_{cl} = \frac{\phi_+ + \phi_-}{2}, \ \phi_q = \phi_+ - \phi_-, \tag{7}$$





• Propagators:

$$iG^{K}(t_{1}, \mathbf{x}_{1}|t_{2}, \mathbf{x}_{2}) = \phi_{cl}(t_{1}, \mathbf{x}_{1})\phi_{cl}(t_{2}, \mathbf{x}_{2}) = \frac{1}{2} \left\langle \mathsf{BD} \middle| \{\phi(t_{1}, \mathbf{x}_{1}), \phi(t_{2}, \mathbf{x}_{2})\} \middle| \mathsf{BD} \right\rangle,$$
  

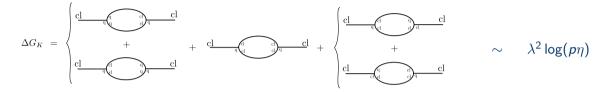
$$iG^{R}(t_{1}, \mathbf{x}_{1}|t_{2}, \mathbf{x}_{2}) = \phi_{q}(t_{1}, \mathbf{x}_{1})\phi_{cl}(t_{2}, \mathbf{x}_{2}) = -\theta(t_{2} - t_{1})\rho(t_{1}, \mathbf{x}_{1}|t_{2}, \mathbf{x}_{2}),$$
  

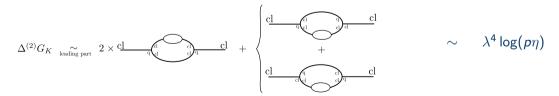
$$\rho(t_{1}, \mathbf{x}_{1}|t_{2}, \mathbf{x}_{2}) = \left\langle \mathsf{BD} \middle| [\phi(t_{1}, \mathbf{x}_{1}), \phi(t_{2}, \mathbf{x}_{2})] \middle| \mathsf{BD} \right\rangle.$$
  
(8)

• In order to find the evolution of the state of the system we calculate loop corrections to the Keldysh propagator:

$$G^{\mathcal{K}}(\boldsymbol{p}|\boldsymbol{\eta},\boldsymbol{\eta}) = f^*_{\boldsymbol{p}}(\boldsymbol{\eta}_1)f_{\boldsymbol{p}}(\boldsymbol{\eta}_2)n_{\boldsymbol{p}}(\boldsymbol{\eta}) + f_{\boldsymbol{p}}(\boldsymbol{\eta}_1)f_{\boldsymbol{p}}(\boldsymbol{\eta}_2)\varkappa_{\boldsymbol{p}}(\boldsymbol{\eta}) + \text{c.c.}$$
(9)









• Resummation via Dyson-Schwinger equation for the leading logarithms:

$$\frac{cl}{cl} = \frac{cl}{cl} + \frac{cl$$

• We use the following ansatz:

$$G^{K}(\boldsymbol{p}|\eta_{1},\eta_{2}) = A_{-}^{2} \eta^{D-1} \frac{N(p\eta)}{(p\eta)^{2\nu}}, \ \eta = \sqrt{\eta_{1}\eta_{2}}.$$
 (10)

• Here we can assume an initial perturbation of BD state  $N_0 = 1 + 2n(P_0) - 2\text{Re}\{\varkappa(P_0)\}$  on the initial surface of physical momentum  $P_0 = (p\eta)_0$ .



• The equation for  $N(p\eta)$  can be cast into the form:

$$\frac{\partial N(p\eta)}{\partial \log(p\eta)} \simeq 4N_0\lambda^2 A_- \operatorname{Im}(A_+) \int_1^{\frac{\nu}{p\eta}} \frac{d\nu}{\nu^{2\nu+1}} \operatorname{Im}(F(\nu)) \left[ N(p\eta\sqrt{\nu}) + N_0 \right].$$
(11)

- The solution of type  $N(p\eta) = C(p\eta)^{\alpha}$  with  $\alpha < 0$  exists only when the initial state is such that  $N_0 = -|N_0| < 0!$
- In this case:

$$G^{K}(\boldsymbol{p}|\eta,\eta) \bigg/ G_{0}^{K}(\boldsymbol{p}|\eta,\eta) \sim (p\eta)^{-\frac{\lambda^{2}|N_{0}|\cdot r}{(D-1)^{2}-4\nu^{2}}} \to \infty \text{ as } p\eta \to 0.$$
(12)



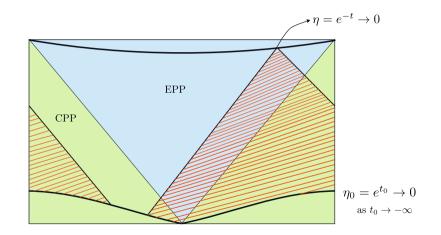
#### Example 2: $\lambda \phi^3$ , heavy fields in Global dS

- Above we showed how to deal with 3<sup>rd</sup> type of secular effects on the example of light fields m < D-1/2 ("complementary series");</li>
- Now we show why in Global dS the secular divergence can play a significant role on the example of heavy fields m > <sup>D-1</sup>/<sub>2</sub> ("principal series");
- The dominant contribution to the loop corrections comes from the infrared region, where  $p_i\eta_i \ll 1$  for each momentum  $p_i$  and time  $\eta_i$  in a loop;
- In the vicinity of these "infrared regions" we can approximate the harmonics by the expressions in EPP and CPP:

$$f_{\rho}(t) \simeq \begin{cases} \eta_{+}^{\frac{D-1}{2}} h_{+}(p\eta_{+}), & \eta_{+} = e^{-t}, \quad t \to +\infty \\ \eta_{-}^{\frac{D-1}{2}} h_{-}(p\eta_{-}), & \eta_{-} = e^{t}, \quad t \to -\infty \end{cases}$$
(13)

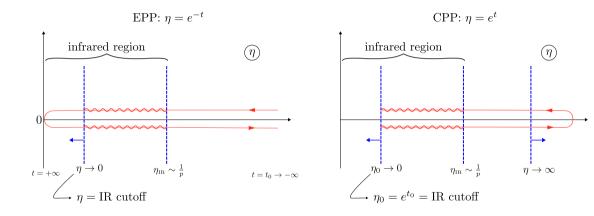


#### Global dS





EPP vs CPP





#### Example 2: $\lambda \phi^3$ , heavy fields in Global dS

Therefore, after some calculation the following result in one loop is expected (the same for κ<sub>p</sub>(t)):

$$n_p(t) \sim \lambda^2 \log\left(p^2 \eta \eta_0\right).$$
 (14)

 Additional internal loops will bring additional powers of log(η<sub>0</sub>), hence we must account for this contributions in Dyson-Schwinger equation (here in CPP):

$$\frac{dn_{\rho}(\eta)}{d\log(\eta/\eta_{0})} = \frac{\lambda^{2}S_{D-2}|A|^{2}}{(2\pi)^{D-1}} \int_{0}^{\infty} dq\eta(q\eta)^{\frac{D-1}{2}} \int_{0}^{\infty} d\eta' q(q\eta')^{\frac{D-1}{2}} \times \\ \times \left\{ \operatorname{Re}\left[ (q\eta)^{-i\mu}V(q\eta)(q\eta')^{i\mu}V^{*}(q\eta') \right] \left\{ [1+n_{\rho}]n_{q}^{2} - n_{\rho}\left[ 1+n_{q}\right]^{2} \right\}(\eta) + \\ + 2\operatorname{Re}\left[ (q\eta)^{i\mu}W(q\eta)(q\eta')^{-i\mu}W(q\eta') \right] \left\{ n_{q}\left[ 1+n_{q}\right]\left[ 1+n_{\rho}\right] - \left[ 1+n_{q}\right]n_{q}n_{\rho} \right\}(\eta) + \\ + \operatorname{Re}\left[ (q\eta)^{i\mu}V(q\eta)(q\eta')^{-i\mu}V^{*}(q\eta') \right] \left\{ [1+n_{q}]^{2}\left[ 1+n_{\rho}\right] - n_{q}^{2}n_{\rho} \right\}(\eta) \right\}.$$
(15)



#### Example 2: $\lambda \phi^3$ , heavy fields in Global dS

• In the cases of mild a)  $n_p \ll 1$  and strong b)  $n_p \gg 1$  initial perturbations, (15) reduces to

a) 
$$\frac{dn_p(\eta)}{d\log(\eta/\eta_0)} \simeq -\Gamma_1 n_p(\eta) + \Gamma_2;$$
 b)  $\frac{dn_p(\eta)}{d\log(\eta/\eta_0)} \simeq \overline{\Gamma} n_p^2(\eta).$  (16)

• The corresponding solutions are

a) 
$$n_p(\eta) \simeq \frac{\Gamma_2}{\Gamma_1}$$
; b)  $n_p(\eta) \simeq \frac{1}{\overline{\Gamma} \log (\eta_*/\eta)}$ . (17)

• In the case a) the dS invariance is restored. In contrast, in the case b) the backreaction must violate dS geometry.



- The secular effects of 3<sup>rd</sup> and 4<sup>th</sup> type can significantly change tree-level picture after the resummation of the leading contributions;
- The evolution of the system at late times t<sub>1</sub>+t<sub>2</sub>/2 → +∞ strongly depends on its initial state on some Couchy surface at the moment t<sub>0</sub>;
- In CPP and Global dS the isometry invariance is broken at loop level, but it is restored after the resummation for the mild perturbations over the BD-state. The strong perturbations lead to explosive behaviour of  $n_p(t)$ .



• The above-mentioned phenomena is extremely important for understanding of how the ambient space is distorted by the quantum fluctuations:

Einstein tensor<sub>$$\mu\nu$$</sub> =  $\langle T_{\mu\nu} \rangle_{matter}$ . (18)

• Another way is to explore effective action of cosmological perturbations after the integration over the matter fields:

$$h_{00} = 2\Phi,$$
  

$$h_{0k} = ik_k Z + Z_k^T,$$
  

$$h_{kl} = -2\Psi \delta_{kl} - 2k_k k_l E + i(k_k W_l^T + k_l W_l^T) + h_{kl}^{TT}.$$
(19)



$$\Gamma_{\rm eff} = S_{\rm cl} + \dots + \dots + \dots + \dots + \dots$$

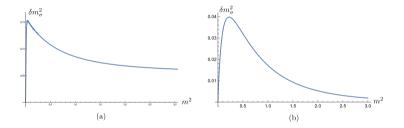
- Effective mass of the external field's perturbation is the simplest component of the effective action in the long-wave expansion;
- It was shown that in BD state for the free fields the mass term vanishes in the tensor sector despite the natural Gibbons-Hawking temperature  $T_{dS} = \frac{H}{2\pi}$ :

$$m_{TT}^2 \equiv 0. \tag{20}$$

[Sadekov(24)]



• In scalar sector the situation is not trivial already for free fields. For example, in two dimensions for the mass term of Liouville field:



• The problem of backreaction of self-interacting fields onto the ambient geometry due to infrared secular effects is still open.



# Thank You



Damir Sadekov • QUARKS-2024 | • 20/20