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[𝜕𝑧𝑔𝑖𝑗 𝑧 𝜕𝑧 + 𝑉𝑖𝑗 𝑧; 𝜆 ]𝑢𝑗 𝑧 = 0, 𝑧 ∈ ℝ, 𝑖, 𝑗 ∈ 1,… ,𝑁 ,

𝑉𝑖𝑗 𝑧; 𝜆 = 𝑉𝑖𝑗 𝑧 − 𝜆𝑔𝑖𝑗 𝑧 ,

𝑔𝑖𝑗 𝑧 ቚ
𝑧>𝐿

= 𝑔𝑖𝑗
+ , 𝑉𝑖𝑗 𝑧 ቚ

𝑧>𝐿
= 𝑉𝑖𝑗

+,

𝑔𝑖𝑗 𝑧 ቚ
𝑧<−𝐿

= 𝑔𝑖𝑗
− , 𝑉𝑖𝑗 𝑧 ቚ

𝑧<−𝐿
= 𝑉𝑖𝑗

−.

Setup
We consider the matrix Shrodinger equation on the line

Where and 𝜆 is an auxiliary parameter. 

We also assume that there 
exists 𝐿 > 0 such that

(1)

(2)
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g 𝑧 and 𝑉 𝑧 are real and symmetric. g 𝑧 is positive definite and 𝑔𝑖𝑗 𝑧 are once 

piecewise continuously differentiable functions. 𝑉𝑖𝑗 𝑧 are piecewise continuous 

functions. 



Historical review
• Single channel scattering problem for one-dimensional Shrodinger equation on 

the line was solved by Fadeev (1964) [1,2]
• The proof of unitarity of the 𝑆-matrix in the presence of closed scattering 

channels on semi-axis is given by Newton (1982) [3]  
• Some scattering and analytical properties for two-channel Hamiltonians were 

revealed by Melgaard (2001) [4,5]
• Multichannel scattering problem on the line for the one-dimensional Shrodinger

equation on the line was investigated mostly by Aktosun (2001) [6-9], however 
the unitarity was not proved. 

To our knowledge, the description of properties of the S-matrix, of the Jost
solutions, and of the bound states in the general case of multichannel scattering 
on a line with different thresholds at both left and right infinities is absent in the 
literature.
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(𝐹±
+)𝑖𝑠 𝑧; 𝜆

𝑧→ +∞
(𝑓+)𝑖𝑠′ 𝑒

±𝑖𝐾+𝑧
𝑠′𝑠

, (𝐹±
−)𝑖𝑠 𝑧; 𝜆

𝑧→−∞
(𝑓−)𝑖𝑠′ 𝑒

±𝑖𝐾−𝑧
𝑠′𝑠

.

By definition, the Jost solutions to Eq. (1) have the asymptotics

Jost solutions
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(𝐾± )𝑠𝑠′ = 𝛿𝑠𝑠′ Λ𝑠
± − 𝜆, 𝑔𝑖𝑗

±𝑓𝑗𝑠
±Λ𝑠

± = 𝑉𝑖𝑗
±𝑓𝑗𝑠

±, (𝑓±)𝑇𝑔±𝑓± = 1,where

The Jost solutions 𝐹±
+ and 𝐹±

− constitute bases in 
the space of solutions of Eq. (1). Consequently,

𝐹+
+ = 𝐹+

−Φ+ + 𝐹−
−Ψ+,

𝐹−
+ = 𝐹+

−Ψ− + 𝐹−
−Φ−.

𝜔 𝜑,𝜓 ≔ 𝜑𝑇 𝑧 𝑔 𝑧 𝜕𝑧𝜓 𝑧 − 𝜕𝑧𝜑
𝑇 𝑧 𝑔 𝑧 𝜓 𝑧 ,

It is clear, that the Wronskian,

of two solutions 𝜑 𝑧 , and 𝜓 𝑧 , of Eq. (1) is independent of z and defines a skew-
symmetric scalar product on the space of solutions of Eq. (1). The Wronskian 
generates identities in space of solutions of Eq. (1).

(3)

(4)

(5)

(6)



𝐹+
+𝑡(1) = 𝐹+

− + 𝐹−
−𝑟(1), 𝐹−

−𝑡(2) = 𝐹−
+ + 𝐹+

+𝑟(2),

Let us introduce the transmission matrices 𝑡(1,2) and the reflection matrices 𝑟(1,2)

Define the 𝑆-matrix as
𝑆 ≔

𝑡(1) 𝑟(2)
𝑟(1) 𝑡(2)

.

Then the 𝑆-matrix possesses the symmetries

0 𝐾−
𝐾+ 0

𝑆 = 𝑆𝑇
0 𝐾+
𝐾− 0

,
0 𝐾−
𝐾+ 0

𝑆 = 𝑆
𝑇 0 𝐾+
𝐾− 0

,

𝑆
𝑇 𝐾+ 0

0 𝐾−
𝑆 =

𝐾− 0
0 𝐾+

.Φ± ≔ Φ∓,

Ψ± ≔ Ψ∓.

Main identities

(7)

(8)

(9)
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The case when all scattering channels are open

Theorem 1. If 𝜆 belongs to none of the cuts of the functions (𝐾±)𝑠 , 𝑠 ∈ 1,… ,𝑁 ,
i.e., when all the scattering channels are open, the 𝑆-matrix is unitary

𝑆† 𝐾+ 0
0 𝐾−

𝑆 =
𝐾− 0
0 𝐾+

,

Remark. Introducing the notation

෩Φ± ≔ 𝐾−

1

2Φ±𝐾+
−
1

2, ෨𝜓± ≔ 𝐾−

1

2Ψ±𝐾+
−
1

2,

One can reduce (9) to the standard form ሚ𝑆† ሚ𝑆 = 1.

Proposition 1. If all scattering channels are open, there are no bound states.

(10)

(11)
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The case with closed scattering channels
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z

𝑧 = −𝐿 𝑧 = 𝐿

𝑔𝑖𝑗(𝑧)

𝑉𝑖𝑗(𝑧)

𝑙0 open
channels

𝑙𝑐 closed
channels

𝑟0 open
channels

𝑟𝑐 closed
channels

𝑙0 + 𝑙𝑐 = 𝑟0 + 𝑟𝑐 = 𝑁

We split the relations (7) into blocks with respect to the indices 𝑠, 𝑠′ in accordance with 
splitting into open and closed channels,

(𝐹+
+)𝑜𝑡 1 𝑜𝑜 + (𝐹+

+)𝑐𝑡 1 𝑐𝑜 = (𝐹+
−)𝑜 + (𝐹−

−)𝑜𝑟 1 𝑜𝑜 + (𝐹−
−)𝑐𝑟 1 𝑐𝑜,

(𝐹+
+)𝑜𝑡 1 𝑜𝑐 + (𝐹+

+)𝑐𝑡 1 𝑐𝑐 = (𝐹+
−)𝑐 + (𝐹−

−)𝑜𝑟 1 𝑜𝑐 + (𝐹−
−)𝑐𝑟 1 𝑐𝑐,

(𝐹−
−)𝑜𝑡 2 𝑜𝑜 + (𝐹−

−)𝑐𝑡 2 𝑐𝑜 = (𝐹−
+)𝑜 + (𝐹+

+)𝑜𝑟 2 𝑜𝑜 + (𝐹+
+)𝑐𝑟 2 𝑐𝑜,

(𝐹−
−)𝑜𝑡 2 𝑜𝑐 + (𝐹−

−)𝑐𝑡 2 𝑐𝑐 = (𝐹−
+)𝑐 + (𝐹+

+)𝑜𝑟 2 𝑜𝑐 + (𝐹+
+)𝑐𝑟 2 𝑐𝑐.

Where, for example,

𝑡(1) =
𝑡 1 𝑜𝑜 𝑡 1 𝑜𝑐

𝑡 1 𝑐𝑜 𝑡 1 𝑐𝑐
, 𝐹±

+ = (𝐹±
+)𝑜 (𝐹±

+)𝑐 .

𝑔𝑖𝑗
− 𝑔𝑖𝑗

+𝑉𝑖𝑗
−

𝑉𝑖𝑗
+

(12)

(13)

Fig. 1



Theorem 2. The 𝑆-matrix in the subspace of open channels is unitary:

Theorem 3. The following condition detΦ+ 𝜆 = 0, 𝜆 ∈ ℝ,

is a necessary and sufficient condition for the existence of bound states of Eq. (1).

Identities in the subspace of open channels

(14)
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𝑡 2 𝑜𝑜
† (𝐾−)0𝑟 1 𝑜𝑜𝑀 + 𝑟 2 𝑜𝑜

† (𝐾+)0𝑡 1 𝑜𝑜 = 0,

𝑡 1 𝑜𝑜
† (𝐾+)0𝑡 1 𝑜𝑜 + 𝑟 1 𝑜𝑜

† (𝐾−)0𝑟 1 𝑜𝑜 = (𝐾−)0.

𝑟 1 𝑜𝑜
† (𝐾−)0𝑡 2 𝑜𝑜 + 𝑡 1 𝑜𝑜

† (𝐾+)0𝑟 2 𝑜𝑜 = 0,

𝑡 2 𝑜𝑜
† (𝐾−)0𝑡 2 𝑜𝑜 + 𝑟 2 𝑜𝑜

† (𝐾+)0𝑟 2 𝑜𝑜 = 1.

Where 𝑀 ≔ 𝑡 1 𝑜𝑜
v 𝑡 1 𝑜𝑜 = 𝑡 2 𝑜𝑜𝑡 2 𝑜𝑜

v , and 𝐴v - pseudo inverse matrix. 

(15)



An electrodynamic example: helical 
wired metamaterial
The kernel of the non-local effective permittivity tensor Ƹ𝜀𝑖𝑗 in 

a helical wire metamaterial reads as

𝐾𝑖𝑗 𝑘0; 𝒙, 𝒙
′ = 𝜀ℎ 𝛿𝑖𝑗 − 𝜏𝑖 𝑧

𝜔𝑝
2

𝜔0
2 − 𝑣2(𝝉(𝑧)෡𝒌)2

𝜏𝑗 𝑧′ 𝛿 𝒙 − 𝒙′ ,
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where

𝝉 𝑧 = sin𝛼 sin 𝑞𝑧 , sin 𝛼 cos 𝑞𝑧 , cos 𝛼 , ෠𝑘𝑖 = −𝑖
𝜕

𝜕𝑥𝑖
.𝜔0 = 𝜀ℎ

1/2
k0,

rot𝑖𝑗
2 − 𝑘0

2 Ƹ𝜀𝑖𝑗 𝐴𝑗 = 0.

The Maxwell equations in a 
dispersive medium take the form

(𝜔0
2 − 𝑣2(𝝉(𝑧)෡𝒌)2)Ψ + 𝜔0𝜔𝑝 (𝝉𝑨) = 0,

(𝜔0
2−rot2) 𝑨 + 𝜔0𝜔𝑝Ψ𝝉 = 0.

We can get rid of nonlocality in the Maxwell equations 
with the permittivity tensor Ƹ𝜀𝑖𝑗 by introducing the 

additional scalar field Ψ obeying certain boundary 
conditions.

~

Fig. 2
by Kashke & Wegener [10]

(16)

(17)

(18)



An electrodynamic example: helical wired metamaterial

Scattering problem setup
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𝑨𝑖𝑛 = 𝒇𝑖𝑛𝑒
𝑖𝒌𝒙

𝑨𝑟 = (𝑟1𝒇1 + 𝑟2𝒇2)𝑒
𝑖𝒌⊥𝒙⊥−𝑖𝑘3𝑧

𝑨𝑡 = (𝑡1𝒇1 + 𝑡2𝒇2)𝑒
𝑖𝒌⊥𝒙⊥+𝑖𝑘3𝑧

z

Ψ

𝑧 = 0 𝑧 = 𝐿

𝑨

[𝑨⊥]𝑧=0= [𝑨⊥]𝑧=𝐿 = 0, [𝑟𝑜𝑡𝑨⊥]𝑧=0= [𝑟𝑜𝑡𝑨⊥]𝑧=𝐿 = 0, Ψ𝑧=0= Ψ𝑧=𝐿 = 0.

Boundary conditions

Helical metamaterial slab

(19)



An electrodynamic example: helical wired metamaterial
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[𝜕𝑧𝑔𝑖𝑗 𝑧 𝜕𝑧 + 𝑉𝑖𝑗 𝑧 ]𝑢𝑗 𝑧 = 0,

𝑔𝑖𝑗 =
1 0 0
0 1 0
0 0 𝑣 cos 𝛼

, 𝑉𝑖𝑗 𝑧 =

𝜔0
2 0

𝜔𝑝

2
𝜔0 sin 𝛼 𝑒

𝑖 𝑞 𝑧

0 𝜔0
2

𝜔𝑝

2
𝜔0 sin 𝛼 𝑒

−𝑖 𝑞 𝑧

𝜔𝑝

2
𝜔0 sin 𝛼 𝑒

−𝑖 𝑞 𝑧
𝜔𝑝

2
𝜔0 sin 𝛼 𝑒

𝑖 𝑞 𝑧 𝜔0
2 − 𝜔𝑝

2 cos2 𝛼

, 𝑢𝑗 𝑧 =

𝑎+
𝑎−
෩Ψ

≔

𝐴1 + 𝑖𝐴2
𝐴1 − 𝑖𝐴2

2Ψ

,

𝑎± = −
𝜔𝑝𝜔0 sin 𝛼

2(𝜔0
2 − 𝑘3 ± 𝑞 2

𝑒𝑖 (𝑘3±𝑞)𝑧, ෩Ψ = 𝑒𝑖 𝑘3𝑧 ,

𝜔0
2𝜔𝑝

2 sin2 𝛼 𝜔0
2 − 𝑞2 − 𝑘3

2 − 𝜔0
2 − 𝑘3 + 𝑞 2 𝜔0

2 − 𝑘3 − 𝑞 2 𝜔0
2 − 𝜔𝑝

2 + 𝑣2𝑘3
2 cos2 𝛼 = 0.

The system of Maxwell's equations reduces to the matrix Schrödinger equation

where

This system of equations turns out to be exactly solvable

where the momentum 𝑘3 is found from the solution of the dispersion equation

Unitarity relation holds!

𝑟1
2 + 𝑟2

2 + 𝑡1
2 + 𝑡2

2 = 1.

(21)

(20)

(22)

(23)

(24)
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