Unitarity Theorem and Bound States Description in Multichannel Scattering for the Schrödinger Equation on a Line with Closed Channels
 P.O. Kazinski and P.S. Korolev
 Tomsk State University
 Based on
 Proc. R. Soc. A, 379, 20230847 (2024) and arXiv:2402.16404 (2024)

Setup

We consider the matrix Shrodinger equation on the line

$$
\begin{equation*}
\left[\partial_{z} g_{i j}(z) \partial_{z}+V_{i j}(z ; \lambda)\right] u_{j}(z)=0, \quad z \in \mathbb{R}, \quad i, j \in\{1, \ldots, N\} \tag{1}
\end{equation*}
$$

Where $\quad V_{i j}(z ; \lambda)=V_{i j}(z)-\lambda g_{i j}(z)$, and λ is an auxiliary parameter.
$g(z)$ and $V(z)$ are real and symmetric. $g(z)$ is positive definite and $g_{i j}(z)$ are once piecewise continuously differentiable functions. $V_{i j}(z)$ are piecewise continuous functions.

We also assume that there exists $L>0$ such that

$$
\begin{cases}\left.g_{i j}(z)\right|_{z>L}=g_{i j}^{+}, & \left.V_{i j}(z)\right|_{z>L}=V_{i j}^{+} \tag{2}\\ \left.g_{i j}(z)\right|_{z<-L}=g_{i j}^{-}, & \left.V_{i j}(z)\right|_{z<-L}=V_{i j}^{-}\end{cases}
$$

Historical review

- Single channel scattering problem for one-dimensional Shrodinger equation on the line was solved by Fadeev (1964) [1,2]
- The proof of unitarity of the S-matrix in the presence of closed scattering channels on semi-axis is given by Newton (1982) [3]
- Some scattering and analytical properties for two-channel Hamiltonians were revealed by Melgaard (2001) [4,5]
- Multichannel scattering problem on the line for the one-dimensional Shrodinger equation on the line was investigated mostly by Aktosun (2001) [6-9], however the unitarity was not proved.

To our knowledge, the description of properties of the S-matrix, of the Jost solutions, and of the bound states in the general case of multichannel scattering on a line with different thresholds at both left and right infinities is absent in the literature.

Jost solutions

By definition, the Jost solutions to Eq. (1) have the asymptotics

$$
\begin{equation*}
\left(F_{ \pm}^{+}\right)_{i s}(z ; \lambda) \underset{z \rightarrow+\infty}{\longrightarrow}\left(f_{+}\right)_{i s^{\prime}}\left(e^{ \pm i K_{+} z}\right)_{s^{\prime} s}, \quad\left(F_{ \pm}^{-}\right)_{i s}(z ; \lambda) \underset{z \rightarrow-\infty}{\longrightarrow}\left(f_{-}\right)_{i s^{\prime}}\left(e^{ \pm i K_{-} z}\right)_{s^{\prime} s} \tag{3}
\end{equation*}
$$

where $\quad\left(K_{ \pm}\right)_{s s^{\prime}}=\delta_{s s^{\prime}} \sqrt{\Lambda_{s}^{ \pm}-\lambda}, \quad g_{i j}^{ \pm} f_{j s}^{ \pm} \Lambda_{s}^{ \pm}=V_{i j}^{ \pm} f_{j s}^{ \pm}, \quad\left(f^{ \pm}\right)^{T} g^{ \pm} f^{ \pm}=1$,
The Jost solutions $F_{ \pm}^{+}$and $F_{ \pm}^{-}$constitute bases in the space of solutions of Eq. (1). Consequently,

$$
\begin{align*}
& F_{+}^{+}=F_{+}^{-} \Phi_{+}+F_{-}^{-} \Psi_{+} \tag{5}\\
& F_{-}^{+}=F_{+}^{-} \Psi_{-}+F_{-}^{-} \Phi_{-}
\end{align*}
$$

It is clear, that the Wronskian,

$$
\begin{equation*}
\omega[\varphi, \psi]:=\varphi^{T}(z) g(z) \partial_{z} \psi(z)-\partial_{z} \varphi^{T}(z) g(z) \psi(z) \tag{6}
\end{equation*}
$$

of two solutions $\varphi(z)$, and $\psi(z)$, of Eq. (1) is independent of z and defines a skewsymmetric scalar product on the space of solutions of Eq. (1). The Wronskian generates identities in space of solutions of Eq. (1).

Main identities

Let us introduce the transmission matrices $t_{(1,2)}$ and the reflection matrices $r_{(1,2)}$

$$
\begin{equation*}
F_{+}^{+} t_{(1)}=F_{+}^{-}+F_{-}^{-} r_{(1)}, \quad F_{-}^{-} t_{(2)}=F_{-}^{+}+F_{+}^{+} r_{(2)} \tag{7}
\end{equation*}
$$

Define the S-matrix as

$$
S:=\left[\begin{array}{ll}
t_{(1)} & r_{(2)} \tag{8}\\
r_{(1)} & t_{(2)}
\end{array}\right]
$$

Then the S-matrix possesses the symmetries

$$
\bar{\Phi}_{ \pm}:=\Phi_{\mp}
$$

$$
\begin{gather*}
{\left[\begin{array}{cc}
0 & K_{-} \\
K_{+} & 0
\end{array}\right] S=S^{T}\left[\begin{array}{cc}
0 & K_{+} \\
K_{-} & 0
\end{array}\right], \quad\left[\begin{array}{cc}
0 & K_{-} \\
K_{+} & 0
\end{array}\right] \bar{S}=\bar{S}^{T}\left[\begin{array}{cc}
0 & K_{+} \\
K_{-} & 0
\end{array}\right]} \\
\bar{S}^{T}\left[\begin{array}{cc}
K_{+} & 0 \\
0 & K_{-}
\end{array}\right] S=\left[\begin{array}{cc}
K_{-} & 0 \\
0 & K_{+}
\end{array}\right] . \tag{9}
\end{gather*}
$$

$$
\bar{\Psi}_{ \pm}:=\Psi_{\mp} .
$$

The case when all scattering channels are open

Theorem 1. If λ belongs to none of the cuts of the functions $\left(K_{ \pm}\right)_{s}, s \in\{1, \ldots, N\}$, i.e., when all the scattering channels are open, the S-matrix is unitary

$$
S^{\dagger}\left[\begin{array}{cc}
K_{+} & 0 \tag{10}\\
0 & K_{-}
\end{array}\right] S=\left[\begin{array}{cc}
K_{-} & 0 \\
0 & K_{+}
\end{array}\right],
$$

Remark. Introducing the notation

$$
\begin{equation*}
\widetilde{\Phi}_{ \pm}:=K_{-}^{\frac{1}{2}} \Phi_{ \pm} K_{+}^{-\frac{1}{2}}, \quad \tilde{\psi}_{ \pm}:=K_{-}^{\frac{1}{2}} \Psi_{ \pm} K_{+}^{-\frac{1}{2}} \tag{11}
\end{equation*}
$$

One can reduce (9) to the standard form $\tilde{S}^{\dagger} \tilde{S}=1$.

Proposition 1. If all scattering channels are open, there are no bound states.

The case with closed scattering channels

We split the relations (7) into blocks with respect to the indices s, s^{\prime} in accordance with splitting into open and closed channels,

$$
\begin{align*}
& \left(F_{+}^{+}\right)_{o} t_{(1) o o}+\left(F_{+}^{+}\right)_{c} t_{(1) c o}=\left(F_{+}^{-}\right)_{o}+\left(F_{-}^{-}\right)_{o} r_{(1) o o}+\left(F_{-}^{-}\right)_{c} r_{(1) c o} \\
& \left(F_{+}^{+}\right)_{o} t_{(1) o c}+\left(F_{+}^{+}\right)_{c} t_{(1) c c}=\left(F_{+}^{-}\right)_{c}+\left(F_{-}^{-}\right)_{o} r_{(1) o c}+\left(F_{-}^{-}\right)_{c} r_{(1) c c}, \tag{12}\\
& \left(F_{-}^{-}\right)_{o} t_{(2) o o}+\left(F_{-}^{-}\right)_{c} t_{(2) c o}=\left(F_{-}^{+}\right)_{o}+\left(F_{+}^{+}\right)_{o} r_{(2) o o}+\left(F_{+}^{+}\right)_{c} r_{(2) c o} \\
& \left(F_{-}^{-}\right)_{o} t_{(2) o c}+\left(F_{-}^{-}\right)_{c} t_{(2) c c}=\left(F_{-}^{+}\right)_{c}+\left(F_{+}^{+}\right)_{o} r_{(2) o c}+\left(F_{+}^{+}\right)_{c} r_{(2) c c} .
\end{align*}
$$

Where, for example,

$$
t_{(1)}=\left[\begin{array}{ll}
t_{(1) o o} & t_{(1) o c} \tag{13}\\
t_{(1) c o} & t_{(1) c c}
\end{array}\right], \quad F_{ \pm}^{+}=\left[\begin{array}{ll}
\left(F_{ \pm}^{+}\right)_{o} & \left(F_{ \pm}^{+}\right)_{c}
\end{array}\right]
$$

Identities in the subspace of open channels

Theorem 2. The S-matrix in the subspace of open channels is unitary:

$$
\begin{align*}
& t_{(2) o o}^{\dagger}\left(K_{-}\right)_{0} r_{(1) o o} M+r_{(2) o o}^{\dagger}\left(K_{+}\right)_{0} t_{(1) o o}=0, \\
& t_{(1) o o}^{\dagger}\left(K_{+}\right)_{0} t_{(1) o o}+r_{(1) o o}^{\dagger}\left(K_{-}\right)_{0} r_{(1) o o}=\left(K_{-}\right)_{0} . \\
& r_{(1) o o}^{\dagger}\left(K_{-}\right)_{0} t_{(2) o o}+t_{(1) o o}^{\dagger}\left(K_{+}\right)_{0} r_{(2) o o}=0, \tag{14}\\
& t_{(2) o o}^{\dagger}\left(K_{-}\right)_{0} t_{(2) o o}+r_{(2) o o}^{\dagger}\left(K_{+}\right)_{0} r_{(2) o o}=1 .
\end{align*}
$$

Where $M:=t_{(1) o o}^{\mathrm{V}} t_{(1) o o}=t_{(2) o o} t_{(2) o o}^{\mathrm{V}}$, and A^{v} - pseudo inverse matrix.

Theorem 3. The following condition

$$
\begin{equation*}
\operatorname{det} \Phi_{+}(\lambda)=0, \quad \lambda \in \mathbb{R}, \tag{15}
\end{equation*}
$$

is a necessary and sufficient condition for the existence of bound states of Eq. (1).

An electrodynamic example: helical wired metamaterial

The kernel of the non-local effective permittivity tensor $\hat{\varepsilon}_{i j}$ in a helical wire metamaterial reads as

$$
K_{i j}\left(k_{0} ; \boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\varepsilon_{h}\left(\delta_{i j}-\tau_{i}(z) \frac{\omega_{p}^{2}}{\omega_{0}^{2}-v^{2}(\boldsymbol{\tau}(z) \widehat{\boldsymbol{k}})^{2}} \tau_{j}\left(z^{\prime}\right)\right) \delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right),(16)
$$

where
$\boldsymbol{\tau}(z)=(\sin \alpha \sin q z, \sin \alpha \cos q z, \cos \alpha), \omega_{0}=\varepsilon_{h}^{1 / 2} \mathrm{k}_{0}, \hat{k}_{i}=-i \frac{\partial}{\partial x_{i}}$. (17)

The Maxwell equations in a dispersive medium take the form

We can get rid of nonlocality in the Maxwell equations with the permittivity tensor $\hat{\varepsilon}_{i j}$ by introducing the additional scalar field Ψ obeying certain boundary conditions.

$$
\begin{equation*}
\left(\operatorname{rot}_{i j}^{2}-k_{0}^{2} \hat{\varepsilon}_{i j}\right) A_{j}=0 . \quad \sim \quad\left(\omega_{0}^{2}-v^{2}(\boldsymbol{\tau}(z) \widehat{\boldsymbol{k}})^{2}\right) \Psi+\omega_{0} \omega_{p}(\boldsymbol{\tau} \boldsymbol{A})=0, ~=~\left(\omega_{0}^{2}-\operatorname{rot}^{2}\right) \boldsymbol{A}+\omega_{0} \omega_{p} \Psi \boldsymbol{\tau}=0 . \tag{18}
\end{equation*}
$$

An electrodynamic example: helical wired metamaterial

Scattering problem setup
Helical metamaterial slab

Boundary conditions

$$
\begin{equation*}
\left[\boldsymbol{A}_{\perp}\right]_{z=0}=\left[\boldsymbol{A}_{\perp}\right]_{z=L}=0, \quad\left[r o t \boldsymbol{A}_{\perp}\right]_{z=0}=\left[r o t \boldsymbol{A}_{\perp}\right]_{z=L}=0, \quad \Psi_{z=0}=\Psi_{z=L}=0 . \tag{19}
\end{equation*}
$$

An electrodynamic example: helical wired metamaterial

The system of Maxwell's equations reduces to the matrix Schrödinger equation

$$
\begin{equation*}
\left[\partial_{z} g_{i j}(z) \partial_{z}+V_{i j}(z)\right] u_{j}(z)=0 \tag{20}
\end{equation*}
$$

where
$g_{i j}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & v \cos \alpha\end{array}\right]$,

$$
V_{i j}(z)=\left[\begin{array}{ccc}
\omega_{0}^{2} & 0 & \frac{\omega_{p}}{\sqrt{2}} \omega_{0} \sin \alpha e^{i q z} \tag{21}\\
0 & \omega_{0}^{2} & \frac{\omega_{p}}{\sqrt{2}} \omega_{0} \sin \alpha e^{-i q z} \\
\frac{\omega_{p}}{\sqrt{2}} \omega_{0} \sin \alpha e^{-i q z} & \frac{\omega_{p}}{\sqrt{2}} \omega_{0} \sin \alpha e^{i q z} & \omega_{0}^{2}-\omega_{p}^{2} \cos ^{2} \alpha
\end{array}\right],
$$

$$
u_{j}(z)=\left[\begin{array}{c}
a_{+} \\
a_{\tilde{\prime}} \\
\tilde{\Psi}
\end{array}\right]:=\left[\begin{array}{c}
A_{1}+i A_{2} \\
A_{1}-i A_{2} \\
\sqrt{2} \Psi
\end{array}\right],
$$

This system of equations turns out to be exactly solvable

$$
\begin{equation*}
a_{ \pm}=-\frac{\omega_{p} \omega_{0} \sin \alpha}{\sqrt{2}\left(\omega_{0}^{2}-\left(k_{3} \pm q\right)^{2}\right.} e^{i\left(k_{3} \pm q\right) z}, \quad \widetilde{\Psi}=e^{i k_{3} z} \tag{22}
\end{equation*}
$$

where the momentum k_{3} is found from the solution of the dispersion equation

$$
\begin{equation*}
\omega_{0}^{2} \omega_{p}^{2} \sin ^{2} \alpha\left(\omega_{0}^{2}-q^{2}-k_{3}^{2}\right)-\left(\omega_{0}^{2}-\left(k_{3}+q\right)^{2}\right)\left(\omega_{0}^{2}-\left(k_{3}-q\right)^{2}\right)\left(\omega_{0}^{2}-\left(\omega_{p}^{2}+v^{2} k_{3}^{2}\right) \cos ^{2} \alpha\right)=0 . \tag{23}
\end{equation*}
$$

$$
\begin{align*}
& \text { Unitarity relation holds! } \\
& \left|{\mid r r_{1}}^{2}+\left|r_{2}\right|^{2}+\left|t_{1}\right|^{2}+\left|t_{2}\right|^{2}=1 .\right. \tag{24}
\end{align*}
$$

Acknowledgments. This work was supported by the RSF project 21-71-10066.

References.

[1] Faddeev, L. D.: On the connection between the S-matrix and the potential for the one-dimensional Schrödinger operator [in Russian]. DAN SSSR 121, 63-66 (1958)
[2] Faddeev, L. D.: Properties of the S-matrix of the one-dimensional Schrödinger equation [in Russian]. Trudy Mat. Inst. Steklov 73, 314 (1964)
[3] Newton, R. G.: Scattering Theory of Waves and Particles. Springer-Verlag, New York (1982)
[4] Melgaard, M.: Spectral Properties at a Threshold for Two-Channel Hamiltonians: II. Applications to Scattering Theory. J. Math. Anal. Appl. 256, 568-586 (2001)
[5] Melgaard, M.: On bound states for systems of weakly coupled Schrödinger equations in one space dimension. J. Math. Phys. 43, 5365-5385 (2002)
[6] Aktosun, T., Klaus, M., van der Mee, C.: Scattering and inverse scattering in one-dimensional nonhomogeneous media. J. Math. Phys. 33, 1717-1744 (1992)
[7] Aktosun, T.: Bound states and inverse scattering for the Schrödinger equation in one dimension. J. Math. Phys. 35, 6231-6236 (1994)
[8] Aktosun, T., Klaus, M., van der Mee, C.: Small-energy asymptotics of the scattering matrix for the matrix Schrödinger equation on the line. J. Math. Phys. 42, 4627-4652 (2001)
[9] Aktosun, T., Klaus, M., van der Mee, C.: Direct and inverse scattering for selfadjoint Hamiltonian systems on the line. Integral Equ. Oper. Theory. 38, 129-171 (2000)
[10] Kaschke, J., \& Wegener, M. (2015). Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography. Optics letters, 40(17), 3986-3989.

