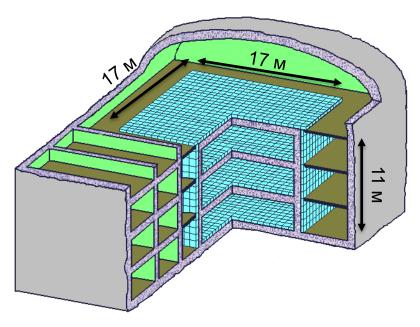
Поиск мюонных нейтрино из нижней полусферы в совпадении с гравитационно-волновыми событиями


Унатлоков И.Б. и коллаборация БПСТ

Институт ядерных исследований РАН

Баксанский подземный сцинтилляционный телескоп

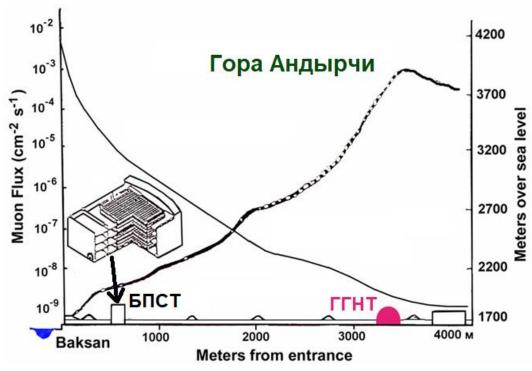

БПСТ - многоцелевой детектор, предназначенный для широкого диапазона исследований в области физики космических лучей, элементарных частиц и нейтринной астрофизики.

Схема БПСТ

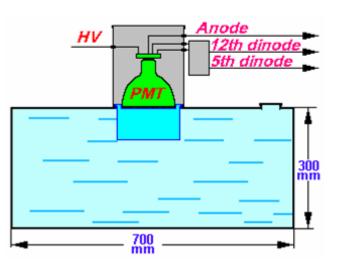
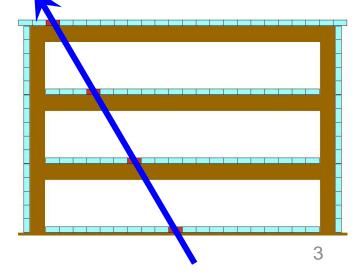
- Общая масса сцинтиллятора
 330 тонн (3180 счетчиков).
- $h_{add} = 850 \text{ M.B.a.}$
- Угловое разрешение ≈1.6°.

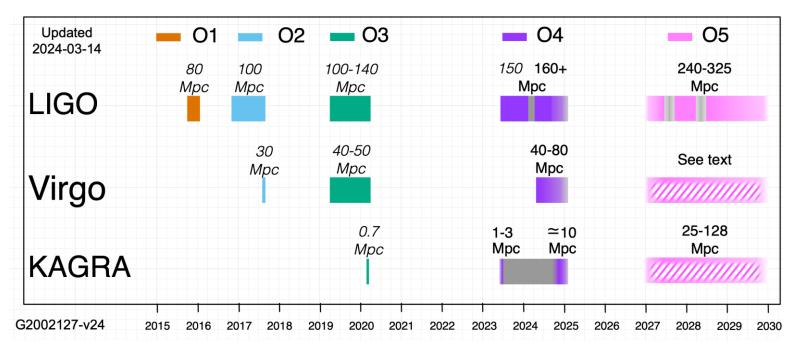
Схема расположения БПСТ в выработке горы Андырчи и зависимость потока мюонов от глубины

Баксанский подземный сцинтилляционный телескоп

Фотография горизонтальной плоскости

Счетчик БПСТ

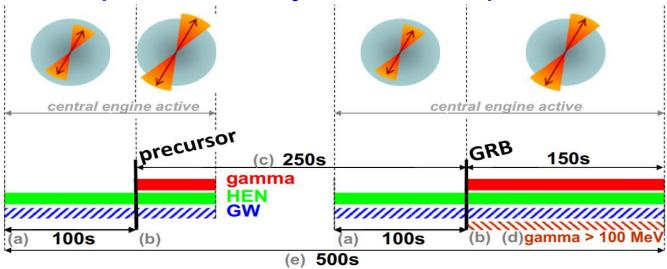




Схема события из нижней полусферы

Из направления нижней полусферы отсутствует фон от проникающих под землю мюонов. Благодаря этому, в случае если мюон прилетел из нижней полусферы, можно считать, что он порожден от взаимодействия нейтрино с веществом под установкой. При этом неопределенность направления нейтрино ≈ 5°.

Гравитационно-волновые события

График работы ГВ обсерваторий



https://gwosc.org/ - подтверждённые ГВ события.

https://gracedb.ligo.org/ - кандидаты на ГВ события.

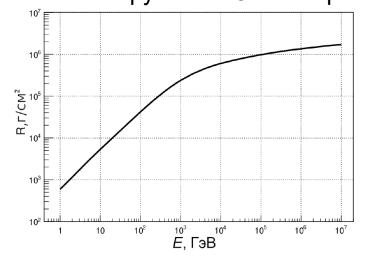
https://gcn.nasa.gov/ - оповещения о «триггере» на ГВ детекторах.

Время между ГВ и нейтрино

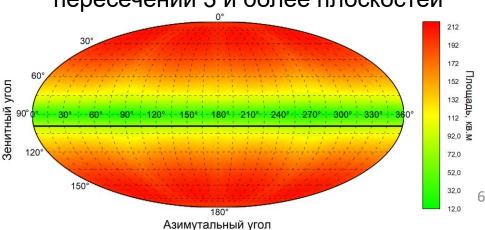
Из статьи *B. Baret et al. «Bounding the Time Delay between High-energy Neutrinos and Gravitational-wave Transients from Gamma-ray Bursts», Astropart.Phys. 35, 1, 2011* (Ha основе данных BATSE, Swift, Fermi LAT).

- 1. Начало активности внутри звезды перед прекурсором гаммавспышки – не более 100 секунд.
- Выход релятивистского джета за пределы звездной поверхности (возникновение прекурсора гамма-вспышки) затем начало новой активности внутри звезды перед гамма-вспышкой – не более 250 секунд.
- 3. Выход релятивистского джета за пределы звездной поверхности (гамма-вспышка) не более 150 секунд.

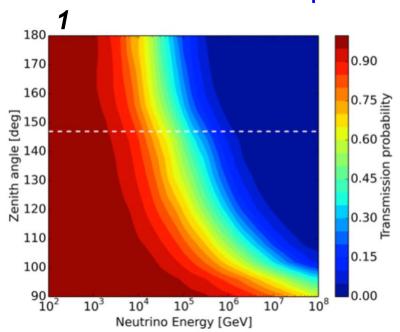
Эффективная площадь БПСТ

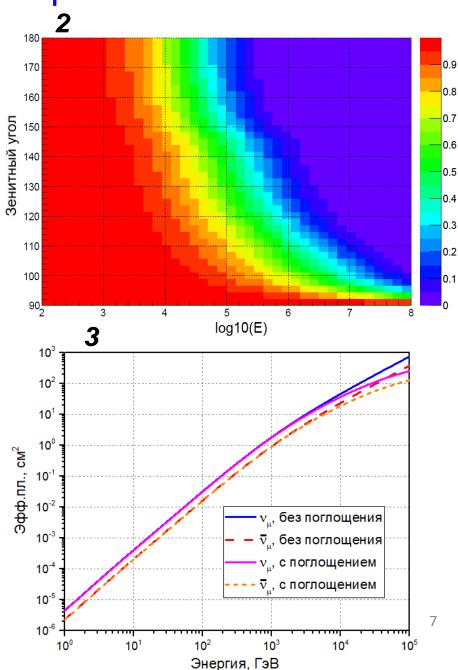

$$\Phi_{\mu}(>E_{\mu}^{min}) = \int_{E_{\mu}^{min}}^{E_{\mu}^{max}} dE_{\nu} P(E_{\nu}, E_{\mu}^{min}) L(h, E_{\nu}) \frac{d\Phi_{\nu}}{dE_{\nu}}$$

$$N = \int_{E_{\mu}^{min}}^{E_{\mu}^{max}} dE_{\nu} P(E_{\nu}, E_{\mu}^{min}) L(h, E_{\nu}) S_{T} \frac{d\Phi_{\nu}}{dE_{\nu}}$$


$$P(E_{\nu}, E_{\mu}^{min}) = N_A \sigma_{CC}(E_{\nu}) R(E_{\nu}, E_{\mu}^{min})$$

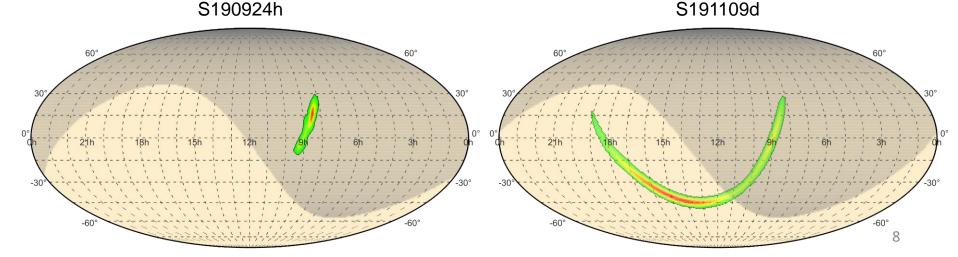
$$S_{eff}(E_{\nu}) = N_A \sigma_{CC}(E_{\nu}) R(E_{\nu}, E_{\mu}^{min}) L(h, E_{\nu}) S_T$$


Зависимость эффективного пробега мюона в грунте БНО от энергии


Площадь телескопа в зависимости от зенитного, азимутального углов, при пересечении 3 и более плоскостей

Поглощение нейтрино в Земле

- Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption, 2017, arXiv:1711.08119v1. На основе 10,784 мюонов из нижней полусферы.
- 2. High-energy neutrino attenuation in the Earth and its associated uncertainties, 2017, arXiv:1706.09895v1. "NuFATE".
- Зависимость эффективной площади БПСТ от энергии при зенитном угле 180°.


Ограничения на потоки

$$N = \int_{E_{\mu}^{min}}^{E_{\mu}^{max}} dE_{\nu} P(E_{\nu}, E_{\mu}^{min}) L(h, E_{\nu}) S_{T} \frac{d\Phi_{\nu}}{dE_{\nu}}$$

$$\frac{d\Phi_{\nu}}{dE_{\nu}} = \Phi_{0} \left(\frac{E_{\nu}}{\Gamma \ni B}\right)^{-\gamma} \left[\Gamma \ni B^{-1} cm^{-2}\right]$$

$$N = \Phi_{0} \int_{E_{\mu}^{min}}^{E_{\mu}^{max}} dE_{\nu} S_{eff}(E_{\nu}) E_{\nu}^{-2}$$

$$\Phi_{0} = \frac{2.3}{\int_{E_{\mu}^{min}}^{E_{\mu}^{max}} dE_{\nu} S_{eff}(E_{\nu}) E_{\nu}^{-2}}$$

Ограничения на Φ_0

Кандидат	Φ _{0νμmin}	$\Phi_{0 u_{ m \mu max}}$	$\Phi_{0\overline{ u}_{\mu ext{min}}}$	$\Phi_{0\overline{ u}_{\mu ext{max}}}$
S240515m	128.006	260.057	252.132	512.234
S240514x	150.015	193.772	295.484	381.672
S240514c	127.443	264.048	251.024	520.095
S240512r	124.679	246.943	245.579	486.403
S240511i	126.166	128.451	248.509	253.009
S240507p	123.421	134.129	243.102	264.194
S240505av	121.859	260.057	240.026	512.234
S240501an	128.444	263.611	252.996	519.233
S240430ca	130.635	255.363	257.312	502.988
S240428dr	122.17	151.969	240.638	299.334

Спасибо за внимание!