

XXII INTERNATIONAL SEMINAR ON HIGH-ENERGY PHYSICS

Caustic-like Structures in UHECR Flux after Propagation in Turbulent IGMF

Konstantin Dolgikh

In collaboration with A. Korochkin, G. Rubtsov, D. Semikoz, I. Tkachev

E-mail: dolgikh.ka15@physics.msu.ru

Tuesday, 21 May 2024

Motivation: TA & PAO hotspots

2) Absence of obvious point sources

See more: https://pos.sissa.it/444/521/

Constraints on the IGMF

Is it possible that observed UHECR hotspots are due to propagation in a strong IGMF?

 $E \ge 10^{19} eV$ B = 1 nG $\lambda_{c} \ge 1 Mpc$ Z = 1

Simulation setup

1D picture

Average deflection angle of UHECR protons after propagation in turbulent MF is given by analytic formula:

Linear grow at small distances and \sqrt{D} at large distances: good agreement 5 between theoretical prediction and simulations

2D picture

Distribution of cosmic rays on the spheres of different radius around the source

Medium-scale anisotropies first increase and then blur

2D picture

Magnetic void - large region with flux deficit

Magnetic filament - sausage-like structure with moderately amplified flux

Magnetic knot – small region with the strongest flux amplification

depends on the position of the observer!

Zoom into void

Zoom into void

Observer point of view

Zoom into filament

Zoom into filament

Observer point of view

Zoom into knot

Explanation

- Similar effect: Diego Harari et al. UHECR lensing in GMF (parallel beam)
- Flux amplification for the diverging beam:

$$A(D) = A_0 \left(1 - \frac{Ze}{E} \int_0^D s \left(1 - \frac{s}{D} \right) \left(\operatorname{rot} \vec{B} \cdot d\vec{s} \right) \right)$$

Length of structures

$$\lambda_{c} = 1 Mpc$$
$$B = 1 nG$$

Probability of voids/knots

B=1nG

The average flux on the entire sphere around the source remains constant

What does observer see? GMF

approximately coincide with the position of the TA hotspot

14

GMF model Jansson&Farrar+12

What does observer see? Set of sources

GMF model Jansson&Farrar+12 Online demo: http://85.113.39.151/cosmicRayView/

Conclusions

We can explain

- size of observed UHECR hotspots by propagation effect in strong IGMF
- absence of point sources

Future work:

• Powerful and flexible framework

CRbeam (https://github.com/potassium-chloride/mcray)

• Realistic IGMF by K.Dolag (see https://arxiv.org/abs/2310.13734)

Thank you for your attention

Backup: Forming the structure

Backup: Correlation with rotB

Particle distribution, $\lambda_c = 1$ Mpc, D=5 Mpc

Integral of the magnetic field rotor