UHECR mass composition from their arrival directions with the Telescope Array

Mikhail Kuznetsov for the Telescope Array collaboration

QUARKS-2024 Pereslavl-Zalessky, 21.05.24

Ultra-high energy cosmic rays

- Charged particles with E > 1 EeV
- Flux ~ 1 km⁻²yr⁻¹sr⁻¹
- Steeply falling spectrum
- Origin still unknown (extragalactic)
- Detecting via showers of charged particles in the atmosphere

UHECR observables: energy spectrum

Spectrum **shape is similar in both TA and Auger** experiments: a cutoff at high energies is observed

But

- Spectrum measurements alone have **limited potential** to determine the UHECR origin
- Cut-off is due to GZK effect (protons) or due to the end of injection spectrum 3 / 26 (nuclei)?

UHECR observables: mass composition

Composition measurements have good potential to determine the UHECR origin But

- There is still a **discrepancy** between the modern experiments
 - Systematics are hardly controllable for surface observations
 - Statistics is very limited for fluorescence observations

Also

At E > 100 EeV the statistics is ~20 events: not enough for both methods

UHECR observables: anisotropy

Arrival directions are measured with **good precision** (~1°)

But

- Have limited potential to determine the UHECR origin due to their deflections:
 - Uncertain galactic and extragalactic magnetic fields
 - Uncertain mass (and charge) composition of UHECR

What can we learn from a distribution of UHECR in the sky?

Sources: no clear evidence for particular sources

Magnetic fields

EGMF: observations B < 1 nG

likely negligible

- EGMF: simulations B < 0.01 nG
- GMF: B ~ μ G, factor 2 uncertainty between models in terms of deflections

Mass composition: up to factor 26 uncertainty (p and Fe) in terms of deflections

UHECR flux model

How to disentangle all the uncertainties?

Sources: the most conservative model – 2MRS + isotropy for far sources – covers all the scenarios without large anisotropy

- Magnetic field
 - EGMF deflections: neglect altogether ($B \le 0.1 \text{ nG}$)
 - GMF deflections: fix one of the models (regular + random)

Study the impact of MF variation later

Mass composition: can be studied as a largest uncertainty of the flux model

Approach to mass composition inference

Three-step approach

MK & P.Tinyakov, 2021

- 1. Introduce test statistics: a robust measure of UHECR set deflection from LSS
- 2. Simulate realistic UHECR mock sets originating from LSS with various injected mass compositions
- **3. Apply the test statistics** to both mock sets and data set and infer the mass composition from data

Step one: TS construction

Compute event-set likelihood as a function of events positions at skymap Φ with smeared LSS-sources

$$TS(\theta_{100}) = -2\sum_{E_k} \left(\sum_{i=1}^{\text{events}} \ln \frac{\Phi_{E_k}(\theta_{100}, \mathbf{n}_i)}{\Phi_{\text{iso}}(\mathbf{n}_i)} \right)$$

- The likelihood is sensitive for *average* magnitude of deflections in a given event-set
- For each event set we get one number, a position of TS minimum an average deflection angle recalculated to 100 EeV: $\theta_{100, min}$

Telescope Array Surface Detector

The Experiment

- Largest UHECR experiment in the Northern Hemisphere
- 507 SD stations
- ~700 km² area, 16 years of continuous data collection

The Data Set

- 14 years of SD data
- "Anisotropy cuts" (zen. ang. < 55°)
- Cut to remove possible lightnings: ±10 min around each NLDN event
- ~6000 events with E > 10 EeV

TS for TA SD data

 $\theta_{100},^{\circ}$

TA collab. Science 382 (2023) 903

- Extremeley energetic event detected: 244 EeV
- It is uncorrelated with the LSS
- The whole data set with E > 100 EeV is also uncorrelated with the LSS

Step two: realistic UHECR mock sets

Generate UHECR sets with state-of-art simulated skymaps

- Sources in LSS (corrected 2MRS catalog up to 250 Mpc, isotropy farther) Properly attenuated injected primaries (p-He-O-Si-Fe), secondaries for He & O are included (SimProp 2.4)
- Fix best fit injection spectrum separately for each primary (di Matteo & Tinyakov 2018) No EGMF deflections
- GMF deflections: backtracking for regular component,
- Non-uniform gaussian smearing for random component (Pshirkov et al. 2013)
- Sets are generated according to these maps with a spectrum adjusted to the observed one (TA@ICRC 2015)
- Effectively infinite statistics (statistical effects are reflected only in the data)
- Only free parameters of the model are fractions of each primary
- All other uncertainties: to study separately (subominant!)

Proton map at E = 100 EeV

Iron map at E = 100 EeV

Step three: apply TS to both data and mock sets

Each injected composition model gives a line at some value of $\theta_{100, \text{ min}}$:

to be confronted with the data

TS: injected pure elements vs the data

JCAP 04 (2017) 038

Galactic magnetic fields

Regular and random component, average magnitude is $\sim 1 \ \mu G \ <=> 3^{\circ}$ deflection for proton at 100 EeV

Two reference models of regular field: Pshirkov-Tinyakov '11 & Jansson-Farrar '12 Extragalactic UHECR sources get coherent shift in regular field and non-uniform gaussian smearing in random field

Results and GMF uncertainty

Extragalactic magnetic fields

- Global field in LSS voids (IGMF) and local extragalactic structures field
- Two possible origins: primordial or astrophysical
- Highly uncertain: $B_{IGMF} < 1.7 \text{ nG}$ with correlation length $\lambda_{IGMF} \sim 1 \text{ Mpc}$ or B < 0.05 nG with cosmological scale λ_{IGMF}
- Given the UHECR attenuation length, this yields up to 7° proton deflection at 100 EeV
- Simulated as uniform gaussian smearing for all sources

Results and EGMF uncertainty

Results at E > 100 EeV are stable

Uncertainty of source number density

In our basic simulated sets all galaxies are UHECR sources: $\rho \sim 10^{-2} \text{ Mmc}^{-3}$

The lower limit for sources emitting light-tointermediate composition: $\rho > 2 \cdot 10^{-5} \text{ M}\Pi \text{K}^{-3}$ Pierre Auger collab. 2013

For sources emitting heavy composition: $\rho > 10^{-4} \text{ M} \text{K} \text{K}^{-3}$ MK 2024

Test the robustness of our results for sournce number density uncertainty

- Test two scenarios: $ρ_0 = 10^{-4}$ Μπκ⁻³ и $ρ_0 = 2 \cdot 10^{-5}$ Μπκ⁻³
- Make random thinning of 2MRS catalog to get $\rho = \rho_0$
- Make 20 thinned catalogs (to get the $\sim 5\%$ accuracy)
- Simulate mock event sets with various compositions for each of these catalogs
- Apply the same TS (based on the full 2MRS) to each mock set
- Pick the catalog where the results are the most discrepant from the basic ones

Results and source number density uncertainty I

 $\rho = 10^{-4} \text{ Mpc}^{-3}$

 $\rho \approx 10^{-2} \text{Mpc}^{-3}, f_{\rho}^{\text{inj}} = 100\%, f_{\text{Fe}}^{\text{inj}} = 0\% \dots \rho = 10^{-4} \text{Mpc}^{-3}, f_{\rho}^{\text{inj}} = 100\%, f_{\text{Fe}}^{\text{inj}} = 0\%$ $\rho \approx 10^{-2} \text{Mpc}^{-3}, f_{\rho}^{\text{inj}} = 75\%, f_{\text{Fe}}^{\text{inj}} = 25\% \dots \rho = 10^{-4} \text{Mpc}^{-3}, f_{\rho}^{\text{inj}} = 75\%, f_{\text{Fe}}^{\text{inj}} = 25\%$ $\rho \approx 10^{-2} \text{Mpc}^{-3}, f_{\rho}^{\text{inj}} = 50\%, f_{\text{Fe}}^{\text{inj}} = 50\% \dots \rho = 10^{-4} \text{Mpc}^{-3}, f_{\rho}^{\text{inj}} = 50\%, f_{\text{Fe}}^{\text{inj}} = 50\%$ $\rho \approx 10^{-2} \text{Mpc}^{-3}, f_{\rho}^{\text{inj}} = 0\%, f_{\text{Fe}}^{\text{inj}} = 100\% \dots \rho = 10^{-4} \text{Mpc}^{-3}, f_{\rho}^{\text{inj}} = 0\%, f_{\text{Fe}}^{\text{inj}} = 100\%$

Results at all energies are stable

Results and source number density uncertainty II

 $\rho = 2.10^{-5} \text{ Mpc}^{-3}$

21/26

Results at E > 100 EeV are stable

Bonus: compare with FD composition measurements

Standard method (FD) Telescope Array measurements are consistent with p and He composition at 10 < E < 20 EeV

TA collab., ApJ 858 (2018) 76

Bonus: compare with FD composition measurements

How to reconcile our results about large deflections at 10 < E < 20 EeV with p and He composition measured with the FD at these energies?

- A new method to estimate UHECR injected mass composition from their arrival directions is developed and applied to the Telescope Array data
- The most interesting (and unique) results are at E > 100 EeV events are uncorrelated with LSS
- This implies a very heavy composition indication for spectrum cutoff in sources rather than GZK cutoff
- This result is robust to all known uncertainties, including those of galactic and extragalactic magnentic fields and UHECR source number density

Thank you!

This work is supported in the framework of the State project "Science" by the Ministry of Science and Higher Education of the Russian Federation under the contract 075-15-2024-541

Backup slides

UHECR attenuation

- UHECR are attenuated on soft photon cosmic background (EBL, CMB, Radio bckg.)
- The attenuation length is L~1 Gpc at 10 EeV and L~100 Mpc at 100 EeV
- We can see only sources in local Universe

