Closed 4-braids and the Jones unknot conjecture

Elena Lanina

ITEP (Kurchatov institute) \& MIPT, Moscow in collaboration with D. Korzun and A. Sleptsov, arXiv:2402.02553

May 21, 2024
Quarks-2024

Content

Plan of my talk:
(1) Introduction and brief review
(2) HOMFLY polynomial $H^{\mathcal{K}}(q, A)$ and braid representation π
(3) Braid group B_{4}, fundamental representation
(4. Let $H^{\mathcal{K}}(q, A) \neq 1$. Does there exist $\mathcal{K}: J^{\mathcal{K}}(q)=1$?

Knots classification

A knot is an embedding of a circle into three-dimensional Euclidean space making without self-intersections.

Knot invariants

Knot invariant $/$:

$$
\begin{equation*}
I: \mathcal{K} \rightarrow \mathbb{C}, \text { or } \operatorname{Pol}(q, a), \ldots \tag{1}
\end{equation*}
$$

if for equivalent knots, it holds:

$$
\begin{equation*}
I(\mathcal{K})=I\left(\mathcal{K}^{\prime}\right) \tag{2}
\end{equation*}
$$

The main property of invariants:

$$
\begin{equation*}
I(\mathcal{K}) \neq I\left(\mathcal{K}^{\prime}\right) \quad \Longrightarrow \quad \mathcal{K} \neq \mathcal{K}^{\prime} \tag{3}
\end{equation*}
$$

Jones polynomial

Definition

The Jones polynomial $J(q)$ is a one variable knot invariant, defined by the following skein relation:

$$
\begin{equation*}
q^{2} \cdot J(\nearrow)-q^{-2} \cdot J(\nearrow \nearrow)=\left(q-q^{-1}\right) \cdot J(\uparrow \uparrow) \tag{4}
\end{equation*}
$$

with the requirement for the unknot:

$$
\begin{equation*}
J(\circlearrowleft)=1 \tag{5}
\end{equation*}
$$

Jones unknotting problem. Does there exist a nontrivial knot with the trivial Jones polynomial?

HOMFLY polynomial

Definition

The HOMFLY polynomial $H(q, A)$ is a two variable knot invariant that generalizes both the Alexander and the Jones polynomials. It can be defined with the use of the following skein relation:
$A \cdot H(\ll)-A^{-1} \cdot H(>)=\left(q-q^{-1}\right) \cdot H(\uparrow \uparrow)$,
with the requirement for the unknot:

$$
\begin{equation*}
H(\circlearrowleft)=1 \tag{7}
\end{equation*}
$$

$J(q)=H\left(q, A=q^{2}\right)$. The same unknotting problem can be formulated for the HOMFLY polynomial.

Some known results

(1) The HOMFLY polynomial is not a complete knot invariant. For example, up to 10 crossings there are 5 pairs: $H^{5_{1}}=H^{10_{132}}$, $H^{88}=H^{10_{129}}, H^{8_{16}}=H^{10_{156}}, H^{10_{25}}=H^{10_{56}}, H^{10_{40}}=H^{10_{103}}$. The HOMFLY polynomial is more powerful than the Jones polynomial: $J^{10_{41}}=J^{10_{94}}$, but $H^{10_{41}} \neq H^{10_{94}}$.
(2) Anstee-Przytycki-Rolfsen (1989) and Jones-Rolfsen (1994): suggested generalized mutations, which preserve Jones polynomial.
(3) Tuzun-Sikora (2021): up to 24 crossings Jones detects the unknot.
(4) Thislethwaite (2001): $\exists \mathcal{L} \neq \bigcirc \bigcirc: \mathcal{J}^{\mathcal{L}}=J \bigcirc \bigcirc$; Eliahou-Kauffman-Thislethwaite (2003): extension to the k-component links.
(5) Kronheimer-Mrowka (2011): Khovanov homology detects the unknot.

Quantum $s l_{N}$ braid representation

Definition

The braid group on m strands is
$B_{m}=\left\{\sigma_{1}, \ldots, \sigma_{m-1}\left|\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j| \geq 2 ; \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}\right\}\right.$.
N.Yu. Reshetikhin and V.G. Turaev (1987-1990) constructed its representation with the use of quantum algebras $U_{q}\left(s I_{N}\right)$:

$$
\begin{align*}
\pi: B_{m} & \rightarrow \operatorname{End}\left(V_{1} \otimes \ldots \otimes V_{m}\right) \tag{8}\\
\pi\left(\sigma_{i}\right) & =\mathcal{R}_{i},
\end{align*}
$$

where V_{i} are irr. f.-d. representations of $U_{q}\left(s /_{N}\right)$ and

$$
\begin{equation*}
\mathcal{R}_{i}=1_{V_{1}} \otimes \ldots \otimes \check{\mathcal{R}}_{i, i+1} \otimes \ldots \otimes 1_{V_{m}} \quad \in \operatorname{End}\left(V_{1} \otimes \ldots \otimes V_{m}\right), \tag{9}
\end{equation*}
$$

where $\check{\mathcal{R}}_{i, i+1}: V_{i} \otimes V_{i+1} \rightarrow V_{i+1} \otimes V_{i}$ is the universal R-matrix.

Quantum $s l_{N}$ knot invariants

Any knot is the closure of the corresponding braid $\mathcal{K}=\hat{\beta}$. Reshetikhin-Turaev defined quantum knot invariants:
$H_{\lambda}^{\mathcal{K}}\left(q, A=q^{N}\right)=\frac{\left(A^{|\lambda|} q^{4 c_{2}(\lambda)}\right)^{-w(\mathcal{K})}}{H_{\lambda}^{\bigcirc}(q, A)} \cdot q^{\operatorname{tr}} \operatorname{r}_{1} \otimes \cdots \otimes V_{m}\left(\pi\left(\beta^{\mathcal{K}}\right)\right)$.

where $V_{1}=\ldots=V_{m}=V_{\lambda}$, because a knot has only 1 component; $w(\mathcal{K})$ is the algebraic number of crossings (writhe number); $c_{2}(\lambda)$ is the eigenvalue of the quadratic Casimir element of $s /_{N}$; $|\lambda|$ is the number of boxes in the corresponding Young diagram.

This invariant is called the colored HOMFLY polynomial or quantum $s /_{N}$ invariant or Reshetikhin-Turaev invariant. In the simplest case $\lambda=\square$ it is the usual HOMFLY polynomial defined via the skein relation.

Quantum $s l_{N}$ knot invariants

F.-d. irreps of highest weights are enumerated by Young diagrams:

$$
\mu=\left[r_{1} \geq r_{2} \geq \ldots \geq r_{N-1}\right]=\underset{\square}{\square} \square \square \square
$$

The decomposition in irreducible representations for quantum knot invariants - the so called character expansion:
$H_{\lambda}^{\mathcal{K}}\left(q, A=q^{N}\right) \sim{ }_{q} \operatorname{tr}_{V_{\lambda}^{\otimes m}}\left(\pi\left(\beta^{\mathcal{K}}\right)\right)=\sum_{\mu} \operatorname{tr}_{\mu}\left(\pi\left(\beta^{\mathcal{K}}\right)\right) \cdot \operatorname{qdim}\left(V_{\mu}\right) \cdot(11)$

HOMFLY polynomial for 4-strand knots

Let $\lambda=[1]$, then $V_{[1]}^{\otimes 4}=V_{[4]} \oplus 3 V_{[3,1]} \oplus 2 V_{[2,2]} \oplus 3 V_{[2,1,1]} \oplus V_{[1,1,1,1]}$. In this case, the HOMFLY polynomial has 5 corresponding summands:

$$
\begin{align*}
H_{[1]}^{\mathcal{K}}(q, A) & =\frac{q-q^{-1}}{A-A^{-1}} A^{-w(\mathcal{K})} \times \\
& \times\left(\operatorname{tr}_{[4]}\left(\pi\left(\beta^{\mathcal{K}}\right)\right) q \operatorname{qdim}\left(V_{[4]}\right)+\operatorname{tr}_{[3,1]}\left(\pi\left(\beta^{\mathcal{K}}\right)\right) q \operatorname{dim}\left(V_{[3,1]}\right)+\right. \\
& +\operatorname{tr}_{[2,2]}\left(\pi\left(\beta^{\mathcal{K}}\right)\right) q \operatorname{qdim}\left(V_{[2,2]}\right)+\operatorname{tr}_{[2,1,1]}\left(\pi\left(\beta^{\mathcal{K}}\right)\right) q \operatorname{qdim}\left(V_{[2,1,1]}\right)+ \\
& \left.+\operatorname{tr}_{[1,1,1,1]}\left(\pi\left(\beta^{\mathcal{K}}\right)\right) \operatorname{qdim}\left(V_{[1,1,1,1]}\right)\right) . \tag{12}
\end{align*}
$$

It is known that $V_{\lambda} \simeq V_{\lambda^{t}}, q \rightarrow-q^{-1}$. Therefore, in order to determine $H_{[1]}^{\mathcal{K}}(q, A)$ we have to determine only 3 terms

$$
\operatorname{tr}_{[4]}\left(\pi\left(\beta^{\mathcal{K}}\right)\right), \quad \operatorname{tr}_{[3,1]}\left(\pi\left(\beta^{\mathcal{K}}\right)\right), \quad \operatorname{tr}_{[2,2]}\left(\pi\left(\beta^{\mathcal{K}}\right)\right) .
$$

Explicit R-matrices

Recall the decomposition $V_{[1]}^{\otimes 4}=V_{[4]} \oplus 3 V_{[3,1]} \oplus 2 V_{[2,2]} \oplus 3 V_{[2,1,1]} \oplus V_{[1,1,1,1]}$

$$
\begin{align*}
& \text { [4]: } \pi\left(\sigma_{1}\right)=\pi\left(\sigma_{2}\right)=\pi\left(\sigma_{3}\right)=q \quad \Rightarrow \quad \operatorname{tr}_{[4]}\left(\pi\left(\beta^{\mathcal{K}}\right)\right)=q^{w(\mathcal{K})} \tag{13}\\
& {[3,1]: \pi\left(\sigma_{1}\right)=\left(\begin{array}{ccc}
q & 0 & 0 \\
0 & q & 0 \\
0 & 0 & -\frac{1}{q}
\end{array}\right), \pi\left(\sigma_{2}\right)=\left(\begin{array}{ccc}
q & 0 & 0 \\
0 & -\frac{1}{q^{2}[2]_{q}} & -\frac{\sqrt{[3]]_{q}}}{[2]_{q}} \\
0 & -\frac{\sqrt{[3]_{q}}}{[2]_{q}} & \frac{q^{2}}{[2]_{q}}
\end{array}\right)} \\
& \pi\left(\sigma_{3}\right)=\left(\begin{array}{ccc}
-\frac{1}{q^{3}[3] q} & -\frac{[2]]_{q} \sqrt{q^{2}+q^{-2}}}{[]_{q}} & 0 \\
-\frac{[2] q \sqrt{q^{2}+q^{-2}}}{[3] q_{q}} & \frac{q^{3}}{[3] q} & 0 \\
0 & 0 & q
\end{array}\right) \tag{11}\\
& {[2,2]: \pi\left(\sigma_{1}\right)=\pi\left(\sigma_{3}\right)=\left(\begin{array}{cc}
q & 0 \\
0 & -\frac{1}{q}
\end{array}\right), \pi\left(\sigma_{2}\right)=\left(\begin{array}{cc}
-\frac{1}{q^{2}[2]_{q}} & -\frac{\sqrt{[3]_{q}}}{[2]_{q}} \\
-\frac{\sqrt{[3]_{q}}}{[2]_{q}} & \frac{q^{2}}{[2]_{q}}
\end{array}\right)} \tag{15}
\end{align*}
$$

R-matrices for [2, 2] are equal to R-matrices for [2, 1] on 3 strands. (16)

Nontrivial HOMFLY on B_{4}

Consider $\beta \in B_{4}, \mathcal{K}=\hat{\beta}$. Suppose $H^{\mathcal{K}}(q, A) \neq 1$. Is it possible $J^{\mathcal{K}}(q)=1$?

Theorem (Korzun-Lanina-Sleptsov'2024)
There does not exist a 4-strand knot with the trivial Jones and Alexander polynomials and the non-trivial HOMFLY polynomial.

Nontrivial HOMFLY on B_{4}

Theorem (KLS'2024)

If there exist 4-strand knots with the trivial Jones polynomial and the non-trivial HOMFLY polynomial, then the HOMFLY polynomials of such knots have the following form:

$$
\begin{equation*}
H^{\mathcal{K}}(q, A)=1+\left(A^{2}-q^{2}\right)\left(A^{2}-q^{-2}\right)\left(A^{2}-q^{4}\right)\left(A^{2}-q^{-4}\right) \cdot F^{\mathcal{K}}(q, A) \tag{17}
\end{equation*}
$$

with the following functions:

$$
\begin{equation*}
F^{\mathcal{K}_{m}}=-\sum_{n=0}^{m} \frac{[2 n+4]_{q}[n+3]_{q}[n+1]_{q}}{[3]_{q}[4]_{q}} A^{-2 n-8} \tag{18}
\end{equation*}
$$

with an arbitrary non-negative integer number m.
MFW inequality: $\frac{\max \left(\operatorname{deg}_{A} H\right)-\min \left(\operatorname{deg}_{A} H\right)}{2} \leq b^{\mathcal{K}}-1$.

Eigenvalues

Theorem (Wenzl'1992)

3-strand R-matrices (for $[2,2]$) are unitary at the points $q=\exp \frac{2 \pi i}{k}$ for $|k|=1,2$ and $|k| \geq 6$.
4-strand R-matrices (for $[3,1]$) are unitary at the points $q=\exp \frac{2 \pi i}{k}$ for $|k|=1,2|k| \geq 8$.

Corollary

Since all R-matrices for 4-braid are unitary at the particular values $q=\exp \frac{2 \pi i}{k}$ for $|k|=1,2|k| \geq 8$, the corresponding representation $\pi(\beta)$ for any braid β is also unitary at these points. Hence, its eigenvalues lie on the unit circle: $\left|\lambda_{i}\right|=1$.

Character expansion

Let us present the obtained conjectural HOMFLY polynomial

$$
\begin{array}{r}
H^{\mathcal{K}}(q, A)=1+\left(A^{2}-q^{2}\right)\left(A^{2}-q^{4}\right)\left(A^{2}-q^{-2}\right)\left(A^{2}-q^{-4}\right) \cdot F^{\mathcal{K}}(q, A), \\
F^{\mathcal{K}_{m}}=-\sum_{n=0}^{m} \frac{[2 n+4]_{q}[n+3]_{q}[n+1]_{q}}{[3]_{q}[4]_{q}} A^{-2 n-8} \tag{19}
\end{array}
$$

in the form

$$
\begin{align*}
H^{\mathcal{K}}(q, A) & =\frac{q-q^{-1}}{A-A^{-1}} A^{-w(\mathcal{K})} \times \\
& \times\left(\operatorname{tr}_{[4]}\left(\pi\left(\beta^{\mathcal{K}}\right)\right) q \operatorname{dim}\left(V_{[4]}\right)+\operatorname{tr}_{[3,1]}\left(\pi\left(\beta^{\mathcal{K}}\right)\right) q \operatorname{dim}\left(V_{[3,1]}\right)+\right. \\
& +\operatorname{tr}_{[2,2]}\left(\pi\left(\beta^{\mathcal{K}}\right)\right) q \operatorname{dim}\left(V_{[2,2]}\right)+\operatorname{tr}_{[2,1,1]}\left(\pi\left(\beta^{\mathcal{K}}\right)\right) \operatorname{qdim}\left(V_{[2,1,1]}\right)+ \\
& \left.+\operatorname{tr}_{[1,1,1,1]}\left(\pi\left(\beta^{\mathcal{K}}\right)\right) q \operatorname{dim}\left(V_{[1,1,1,1]}\right)\right) . \tag{20}
\end{align*}
$$

Character expansion

Let us denote $\operatorname{tr}_{\mu}\left(\pi\left(\beta^{\mathcal{K}}\right)\right)$ by a_{μ} for simplicity. As a result, we get

$$
\begin{align*}
a_{[4]} & =q^{2 m+5}, \\
a_{[1,1,1,1]} & =-q^{-2 m-5}, \\
a_{[2,1,1]} & =-\frac{1+q^{2}-q^{2+2 m}\left(1+q^{2}+q^{4}+q^{6}+q^{8}\right)+a_{[2,2]} q^{11+4 m}}{q^{9+4 m}\left(1-q+q^{2}\right)\left(1+q+q^{2}\right)}, \\
a_{[3,1]} & =-\frac{a_{[2,2]} q^{2}+q^{2 m+3}\left(1+q^{2}+q^{4}+q^{6}+q^{8}\right)-q^{11+4 m}\left(1+q^{2}\right)}{\left(1-q+q^{2}\right)\left(1+q+q^{2}\right)} . \tag{21}
\end{align*}
$$

A simple observation is the fact that our hypothetical 4 -strand knots of the trivial Jones polynomial have the odd writhe number w with the possible minimal value $w_{\text {min }}=5$.

Comments on parametrization

We express $a_{[2,1,1]}$ and $a_{[3,1]}$ through $a_{[2,2]}$. The coefficient $a_{[2,2]}$ for a knot $\mathcal{K}=\hat{\beta}$ on 4 strands is equal to the coefficient $a_{[2,1]}$ for a knot $\mathcal{K}^{\prime}=\hat{\beta}^{\prime}=\left.\hat{\beta}\right|_{\sigma_{3} \rightarrow \sigma_{1}}$ on 3 strands (see example below). In other words, considering coefficient $a_{[2,2]}$ we effectively deal with 3 -strand braids. Since w is odd, the closure of such 3 -strand braids always gives a 2-component link.
Therefore, the coefficient $a_{[2,2]}$ is parameterized by 2-component links on 3 -strands with the writhe number $w=2 m+5, m=0,1,2, \ldots$ The simplest example is provided by the torus link $T[2,4]$ that can be represented as the closure of the 3 -strand braid $(4,1)$. This diagram of the torus link $T[2,4]$ has $w=5, m=0$.

System of equations on eigenvalues

So, we choose an arbitrary 2 -link on 3 -strand braid and fix $a_{[2,2]}$. Then we find

$$
\begin{align*}
& a_{[3,1]}=-\frac{a_{[2,2]} q^{2}+q^{2 m+3}\left(1+q^{2}+q^{4}+q^{6}+q^{8}\right)-q^{11+4 m}\left(1+q^{2}\right)}{\left(1-q+q^{2}\right)\left(1+q+q^{2}\right)} \tag{22}\\
& a_{[3,1]} \equiv \operatorname{tr}_{[3,1]}\left(\pi\left(\beta^{\mathcal{K}}\right)\right)=\lambda_{1}(q)+\lambda_{2}(q)+\lambda_{3}(q), \tag{23}\\
& {[3,1]: \operatorname{det}\left(\pi\left(\sigma_{i}\right)\right)=(-q), \quad i=1,2,3 .} \tag{24}
\end{align*}
$$

For representation $[3,1]$, the system takes the following form:

$$
\left\{\begin{array}{l}
\lambda_{1}(q)+\lambda_{2}(q)+\lambda_{3}(q)=a_{[3,1]}(q) \tag{25}\\
\lambda_{1}(q) \cdot \lambda_{2}(q) \cdot \lambda_{3}(q)=(-q)^{w(\mathcal{K})} \\
\lambda_{1}^{-1}(q)+\lambda_{2}^{-1}(q)+\lambda_{3}^{-1}(q)=a_{[3,1]}\left(q^{-1}\right)
\end{array}\right.
$$

The third equation follows from the property $\pi\left(\sigma_{i}\right)^{-1}(q)=\pi\left(\sigma_{i}\right)\left(q^{-1}\right)$.

Computer search

We considered 3-strand braids of the type $\left(c_{1}, b_{1} ; c_{2}, b_{2}\right),-7 \leq c_{1}, b_{1}, c_{2}, b_{2} \leq 7$, with the writhe number $w=2 m+5$, $m=0, \ldots, 5$. We computed absolute values of eigenvalues $\lambda_{i}(q), q=\exp \frac{2 \pi i}{k}$

for all integer values of $k \in[8,150]$
numerically with the help of Wolfram
Mathematica. It turns out that the condition $\left|\lambda_{i}\right|=1$ for all values of k is fulfilled only for the following braids:
$(-5,2 ; 6,2),(-2,-1 ; 1,7),(-2,-1 ; 3,5),(-2,2 ; 3,2),(-1,1 ; 2,3)$,
($-2,2 ; 1,4$). Hypothetically, each of them can correspond to a knot on 4 strands for which the HOMFLY polynomial coincides with our formula (17) for $m=0$.

Thank you for your attention!

