Closed 4-braids and the Jones unknot conjecture

Elena Lanina

ITEP (Kurchatov institute) & MIPT, Moscow in collaboration with D. Korzun and A. Sleptsov, arXiv:2402.02553

May 21, 2024

Quarks-2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Content

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Plan of my talk:

- 1 Introduction and brief review
- **2** HOMFLY polynomial $H^{\mathcal{K}}(q, A)$ and braid representation π
- **3** Braid group B_4 , fundamental representation
- 4 Let $H^{\mathcal{K}}(q, A) \neq 1$. Does there exist $\mathcal{K} : J^{\mathcal{K}}(q) = 1$?

Knots classification

A knot is an embedding of a circle into three-dimensional Euclidean space making without self-intersections.

7_2

7_3

7_5

7_6 77

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Knot invariants

Knot invariant / :

$$I: \mathcal{K} \to \mathbb{C}, \text{ or } \mathsf{Pol}(q, a), \dots$$
 (1)

if for equivalent knots, it holds:

$$I(\mathcal{K}) = I(\mathcal{K}') \tag{2}$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

The main property of invariants:

$$I(\mathcal{K}) \neq I(\mathcal{K}') \implies \mathcal{K} \neq \mathcal{K}'$$
 (3)

Jones polynomial

Definition

The Jones polynomial J(q) is a one variable knot invariant, defined by the following skein relation:

$$q^2 \cdot J\left(\checkmark \right) - q^{-2} \cdot J\left(\checkmark \right) = (q - q^{-1}) \cdot J\left(\uparrow \uparrow \right)$$
(4)

with the requirement for the unknot:

$$J\left(\bigcirc\right) = 1. \tag{5}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Jones unknotting problem. Does there exist a nontrivial knot with the trivial Jones polynomial?

HOMFLY polynomial

Definition

The HOMFLY polynomial H(q, A) is a two variable knot invariant that generalizes both the Alexander and the Jones polynomials. It can be defined with the use of the following skein relation:

$$A \cdot H\left(\begin{array}{c} \\ \end{array}\right) - A^{-1} \cdot H\left(\begin{array}{c} \\ \end{array}\right) = (q - q^{-1}) \cdot H\left(\begin{array}{c} \\ \\ \end{array}\right), (6)$$

with the requirement for the unknot:

$$H\left(\bigcirc\right) = 1.$$
 (7)

 $J(q) = H(q, A = q^2)$. The same unknotting problem can be formulated for the HOMFLY polynomial.

Some known results

(ロト 4 回 ト 4 三 ト 4 三 ト 三 の Q ()

- 1 The HOMFLY polynomial is not a complete knot invariant. For example, up to 10 crossings there are 5 pairs: $H^{5_1} = H^{10_{132}}$, $H^{8_8} = H^{10_{129}}$, $H^{8_{16}} = H^{10_{156}}$, $H^{10_{25}} = H^{10_{56}}$, $H^{10_{40}} = H^{10_{103}}$. The HOMFLY polynomial is more powerful than the Jones polynomial: $J^{10_{41}} = J^{10_{94}}$, but $H^{10_{41}} \neq H^{10_{94}}$.
- Anstee-Przytycki-Rolfsen (1989) and Jones-Rolfsen (1994): suggested generalized mutations, which preserve Jones polynomial.
- **3** Tuzun-Sikora (2021): up to 24 crossings Jones detects the unknot.
- 4 Thislethwaite (2001): ∃L ≠ ○○: J^L = J^{○○};
 Eliahou-Kauffman-Thislethwaite (2003): extension to the k-component links.
- 6 Kronheimer-Mrowka (2011): Khovanov homology detects the unknot.

Quantum sI_N braid representation

Definition

The braid group on *m* strands is $B_m = \{\sigma_1, \ldots, \sigma_{m-1} | \sigma_i \sigma_j = \sigma_j \sigma_i, |i-j| \ge 2; \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \}.$

N.Yu. Reshetikhin and V.G. Turaev (1987-1990) constructed its representation with the use of quantum algebras $U_q(sl_N)$:

$$\begin{aligned} \pi : B_m &\to & \mathsf{End}(V_1 \otimes \ldots \otimes V_m) \\ \pi(\sigma_i) &= & \mathcal{R}_i, \end{aligned}$$

$$(8)$$

where V_i are irr. f.-d. representations of $U_q(sl_N)$ and

 $\mathcal{R}_{i} = 1_{V_{1}} \otimes \ldots \otimes \check{\mathcal{R}}_{i,i+1} \otimes \ldots \otimes 1_{V_{m}} \quad \in \operatorname{End}(V_{1} \otimes \ldots \otimes V_{m}), \qquad (9)$ where $\check{\mathcal{R}}_{i,i+1} : V_{i} \otimes V_{i+1} \to V_{i+1} \otimes V_{i}$ is the universal R-matrix.

Quantum sI_N knot invariants

Any knot is the closure of the corresponding braid $\mathcal{K} = \hat{\beta}$. Reshetikhin–Turaev defined quantum knot invariants:

$$H_{\lambda}^{\mathcal{K}}(q, A = q^{N}) = \frac{\left(A^{|\lambda|}q^{4c_{2}(\lambda)}\right)^{-w(\mathcal{K})}}{H_{\lambda}^{\bigcirc}(q, A)} \cdot_{q} \operatorname{tr}_{V_{1} \otimes \cdots \otimes V_{m}}\left(\pi(\beta^{\mathcal{K}})\right).$$
(10)

where $V_1 = \ldots = V_m = V_\lambda$, because a knot has only 1 component; $w(\mathcal{K})$ is the algebraic number of crossings (writhe number); $c_2(\lambda)$ is the eigenvalue of the quadratic Casimir element of sI_N ; $|\lambda|$ is the number of boxes in the corresponding Young diagram.

This invariant is called the colored HOMFLY polynomial or quantum sl_N invariant or Reshetikhin-Turaev invariant. In the simplest case $\lambda = \Box$ it is the usual HOMFLY polynomial defined via the skein relation.

Quantum sI_N knot invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

F.-d. irreps of highest weights are enumerated by Young diagrams:

$$\mu = [r_1 \ge r_2 \ge \ldots \ge r_{N-1}] =$$

The decomposition in irreducible representations for quantum knot invariants – the so called character expansion:

$$H_{\lambda}^{\mathcal{K}}(q, A = q^{N}) \sim _{q} \operatorname{tr}_{V_{\lambda}^{\otimes m}} \left(\pi(\beta^{\mathcal{K}}) \right) = \sum_{\mu} \operatorname{tr}_{\mu} \left(\pi(\beta^{\mathcal{K}}) \right) \cdot \operatorname{qdim} \left(V_{\mu} \right). (11)$$

HOMFLY polynomial for 4-strand knots

Let $\lambda = [1]$, then $V_{[1]}^{\otimes 4} = V_{[4]} \oplus 3V_{[3,1]} \oplus 2V_{[2,2]} \oplus 3V_{[2,1,1]} \oplus V_{[1,1,1,1]}$. In this case, the HOMFLY polynomial has 5 corresponding summands:

$$\begin{aligned} \mathcal{H}_{[1]}^{\mathcal{K}}(q,\mathcal{A}) &= \frac{q-q^{-1}}{\mathcal{A}-\mathcal{A}^{-1}} \mathcal{A}^{-w(\mathcal{K})} \times \\ &\times \left(\mathsf{tr}_{[4]}\left(\pi(\beta^{\mathcal{K}}) \right) \mathsf{qdim}\left(V_{[4]} \right) + \mathsf{tr}_{[3,1]}\left(\pi(\beta^{\mathcal{K}}) \right) \mathsf{qdim}\left(V_{[3,1]} \right) + \right. \\ &+ \left. \mathsf{tr}_{[2,2]}\left(\pi(\beta^{\mathcal{K}}) \right) \mathsf{qdim}\left(V_{[2,2]} \right) + \mathsf{tr}_{[2,1,1]}\left(\pi(\beta^{\mathcal{K}}) \right) \mathsf{qdim}\left(V_{[2,1,1]} \right) + \right. \\ &+ \left. \mathsf{tr}_{[1,1,1,1]}\left(\pi(\beta^{\mathcal{K}}) \right) \mathsf{qdim}\left(V_{[1,1,1,1]} \right) \right). \end{aligned}$$

It is known that $V_{\lambda} \simeq V_{\lambda^t}, \ q \to -q^{-1}$. Therefore, in order to determine $H_{[1]}^{\mathcal{K}}(q, A)$ we have to determine only 3 terms

$$\mathsf{tr}_{[4]}\left(\pi(\beta^{\mathcal{K}})\right), \ \ \mathsf{tr}_{[3,1]}\left(\pi(\beta^{\mathcal{K}})\right), \ \ \mathsf{tr}_{[2,2]}\left(\pi(\beta^{\mathcal{K}})\right).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Explicit R-matrices

Recall the decomposition $V_{[1]}^{\otimes 4} = V_{[4]} \oplus 3V_{[3,1]} \oplus 2V_{[2,2]} \oplus 3V_{[2,1,1]} \oplus V_{[1,1,1,1]}$ $[4]: \pi(\sigma_1) = \pi(\sigma_2) = \pi(\sigma_3) = q \quad \Rightarrow \quad \operatorname{tr}_{[4]}(\pi(\beta^{\mathcal{K}})) = q^{w(\mathcal{K})}$ (13) $[3,1]:\pi(\sigma_1) = \begin{pmatrix} q & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & -\frac{1}{q} \end{pmatrix}, \ \pi(\sigma_2) = \begin{pmatrix} q & 0 & 0 \\ 0 & -\frac{1}{q^2[2]_q} & -\frac{\sqrt{[3]_q}}{[2]_q} \\ 0 & -\frac{\sqrt{[3]_q}}{q^2} & \frac{q^2}{q^2} \end{pmatrix}$ $\pi(\sigma_3) = \begin{pmatrix} -\frac{1}{q^3[3]_q} & -\frac{[2]_q\sqrt{q^2+q^{-2}}}{[3]_q} & 0\\ -\frac{[2]_q\sqrt{q^2+q^{-2}}}{[3]_q} & \frac{q^3}{[3]_q} & 0 \end{pmatrix}$ $[2,2]: \pi(\sigma_1) = \pi(\sigma_3) = \begin{pmatrix} q & 0\\ 0 & -\frac{1}{q} \end{pmatrix}, \ \pi(\sigma_2) = \begin{pmatrix} -\frac{1}{q^2[2]_q} & -\frac{\sqrt{|3|_q}}{|2|_q} \\ -\sqrt{|3|_q} & q^2 \end{pmatrix}$ (15)

R-matrices for [2,2] are equal to R-matrices for [2,1] on 3 strands. (16)

Nontrivial HOMFLY on B_4

Consider $\beta \in B_4$, $\mathcal{K} = \hat{\beta}$. Suppose $H^{\mathcal{K}}(q, A) \neq 1$. Is it possible $J^{\mathcal{K}}(q) = 1$?

Theorem (Korzun-Lanina-Sleptsov'2024)

There does not exist a 4-strand knot with the trivial Jones and Alexander polynomials and the non-trivial HOMFLY polynomial.

Nontrivial HOMFLY on B_4

Theorem (KLS'2024)

If there exist 4-strand knots with the trivial Jones polynomial and the non-trivial HOMFLY polynomial, then the HOMFLY polynomials of such knots have the following form:

$$H^{\mathcal{K}}(q,A) = 1 + (A^2 - q^2)(A^2 - q^{-2})(A^2 - q^4)(A^2 - q^{-4}) \cdot F^{\mathcal{K}}(q,A)$$
(17)

with the following functions:

$$F^{\mathcal{K}_m} = -\sum_{n=0}^m \frac{[2n+4]_q [n+3]_q [n+1]_q}{[3]_q [4]_q} A^{-2n-8}$$
(18)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

with an arbitrary non-negative integer number m.

MFW inequality: $\frac{max(deg_AH) - min(deg_AH)}{2} \leq b^{\mathcal{K}} - 1.$

Eigenvalues

Theorem (Wenzl'1992)

3-strand R-matrices (for [2,2]) are unitary at the points $q = \exp \frac{2\pi i}{k}$ for |k| = 1, 2 and $|k| \ge 6$. 4-strand R-matrices (for [3,1]) are unitary at the points $q = \exp \frac{2\pi i}{k}$ for |k| = 1, 2 $|k| \ge 8$.

Corollary

Since all *R*-matrices for 4-braid are unitary at the particular values $q = \exp \frac{2\pi i}{k}$ for |k| = 1, 2 $|k| \ge 8$, the corresponding representation $\pi(\beta)$ for any braid β is also unitary at these points. Hence, its eigenvalues lie on the unit circle: $|\lambda_i| = 1$.

Character expansion

Let us present the obtained conjectural HOMFLY polynomial

$$H^{\mathcal{K}}(q,A) = 1 + (A^2 - q^2)(A^2 - q^4)(A^2 - q^{-2})(A^2 - q^{-4}) \cdot F^{\mathcal{K}}(q,A),$$

$$F^{\mathcal{K}_m} = -\sum_{n=0}^m \frac{[2n+4]_q[n+3]_q[n+1]_q}{[3]_q[4]_q} A^{-2n-8}$$
(19)

in the form

$$\begin{aligned} H^{\mathcal{K}}(q, \mathcal{A}) &= \frac{q - q^{-1}}{\mathcal{A} - \mathcal{A}^{-1}} \mathcal{A}^{-w(\mathcal{K})} \times \\ &\times \left(\operatorname{tr}_{[4]} \left(\pi(\beta^{\mathcal{K}}) \right) \operatorname{qdim} \left(V_{[4]} \right) + \operatorname{tr}_{[3,1]} \left(\pi(\beta^{\mathcal{K}}) \right) \operatorname{qdim} \left(V_{[3,1]} \right) + \right. \\ &+ \left. \operatorname{tr}_{[2,2]} \left(\pi(\beta^{\mathcal{K}}) \right) \operatorname{qdim} \left(V_{[2,2]} \right) + \operatorname{tr}_{[2,1,1]} \left(\pi(\beta^{\mathcal{K}}) \right) \operatorname{qdim} \left(V_{[2,1,1]} \right) + \right. \\ &+ \left. \operatorname{tr}_{[1,1,1,1]} \left(\pi(\beta^{\mathcal{K}}) \right) \operatorname{qdim} \left(V_{[1,1,1]} \right) \right). \end{aligned}$$

Character expansion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let us denote $\operatorname{tr}_{\mu}(\pi(\beta^{\mathcal{K}}))$ by a_{μ} for simplicity. As a result, we get

$$\begin{aligned} a_{[4]} &= q^{2m+5}, \\ a_{[1,1,1,1]} &= -q^{-2m-5}, \\ a_{[2,1,1]} &= -\frac{1+q^2 - q^{2+2m} \left(1+q^2+q^4+q^6+q^8\right) + a_{[2,2]} q^{11+4m}}{q^{9+4m} (1-q+q^2) (1+q+q^2)}, \\ a_{[3,1]} &= -\frac{a_{[2,2]} q^2 + q^{2m+3} \left(1+q^2+q^4+q^6+q^8\right) - q^{11+4m} \left(1+q^2\right)}{(1-q+q^2) (1+q+q^2)}. \end{aligned}$$

$$\begin{aligned} &(21) \end{aligned}$$

A simple observation is the fact that our hypothetical 4-strand knots of the trivial Jones polynomial have the odd writhe number w with the possible minimal value $w_{\min} = 5$.

Comments on parametrization

We express $a_{[2,1,1]}$ and $a_{[3,1]}$ through $a_{[2,2]}$. The coefficient $a_{[2,2]}$ for a knot $\mathcal{K} = \hat{\beta}$ on 4 strands is equal to the coefficient $a_{[2,1]}$ for a knot $\mathcal{K}' = \hat{\beta}' = \hat{\beta} \big|_{\sigma_3 \to \sigma_1}$ on 3 strands (see example below). In other words, considering coefficient $a_{[2,2]}$ we effectively deal with 3-strand braids. Since w is odd, the closure of such 3-strand braids always gives a 2-component link.

Therefore, the coefficient $a_{[2,2]}$ is parameterized by 2-component links on 3-strands with the writhe number w = 2m + 5, m = 0, 1, 2, ... The simplest example is provided by the torus link T[2,4] that can be represented as the closure of the 3-strand braid (4, 1). This diagram of the torus link T[2,4] has w = 5, m = 0.

人口 医水黄 医水黄 医水黄素 化甘油

System of equations on eigenvalues

So, we choose an arbitrary 2-link on 3-strand braid and fix $a_{[2,2]}$. Then we find

$$a_{[3,1]} = -\frac{a_{[2,2]}q^2 + q^{2m+3}\left(1 + q^2 + q^4 + q^6 + q^8\right) - q^{11+4m}\left(1 + q^2\right)}{(1 - q + q^2)(1 + q + q^2)}$$
(22)

$$a_{[3,1]} \equiv \operatorname{tr}_{[3,1]}\left(\pi(\beta^{\mathcal{K}})\right) = \lambda_1(q) + \lambda_2(q) + \lambda_3(q), \tag{23}$$

$$[3,1]: \det(\pi(\sigma_i)) = (-q), \ i = 1,2,3.$$
(24)

For representation [3, 1], the system takes the following form:

$$\begin{cases} \lambda_{1}(q) + \lambda_{2}(q) + \lambda_{3}(q) = a_{[3,1]}(q), \\ \lambda_{1}(q) \cdot \lambda_{2}(q) \cdot \lambda_{3}(q) = (-q)^{w(\mathcal{K})}, \\ \lambda_{1}^{-1}(q) + \lambda_{2}^{-1}(q) + \lambda_{3}^{-1}(q) = a_{[3,1]}(q^{-1}). \end{cases}$$
(25)

The third equation follows from the property $\pi(\sigma_i)^{-1}(q) = \pi(\sigma_i)(q^{-1})$.

Computer search

We considered 3-strand braids of the type $(c_1, b_1; c_2, b_2), -7 \le c_1, b_1, c_2, b_2 \le 7$, with the writhe number w = 2m + 5, $m = 0, \ldots, 5$. We computed absolute values of eigenvalues $\lambda_i(q), q = \exp \frac{2\pi i}{k}$ for all integer values of $k \in [8, 150]$ numerically with the help of Wolfram Mathematica. It turns out that the conditional straight for a straight

Mathematica. It turns out that the condition $|\lambda_i| = 1$ for all values of k is fulfilled only for the following braids:

(-5, 2; 6, 2), (-2, -1; 1, 7), (-2, -1; 3, 5), (-2, 2; 3, 2), (-1, 1; 2, 3), (-2, 2; 1, 4). Hypothetically, each of them can correspond to a knot on 4 strands for which the HOMFLY polynomial coincides with our formula (17) for m = 0.

Thank you for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ