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Matrix Models capture the most interesting theoretical
properties of generic field /string theory and allow to

» study the “non-perturbative” properties of integrals
» their interplay with the group/symmetry structures
» avoid additional complexities of functional integration
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with measure
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iJj
and potential
V(X) =) X" (3)

i>0
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Example
Partition function

Z(t) = / dXe'VX) (1)
satisfy Ward identities
L,Z(t) =0, n>—1, (2)

where L,-s form a simplest W algebra of constraints , which
can be solved, giving W-representation of matrix model

Z(t)=e"® .1, (3)
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» Matrix integral
» Solution to the set of W constraints

» |W-representation



w algebras

Two-matrix models possess W-representation

_ 9 ’ _ k
Z,(p) = exptr (/\a—/\/\> -1, px = tr \*. (4)



w algebras

Two-matrix models possess W-representation

_ 9 ’ _ k
Z,(p) = exptr (/\a—/\/\> -1, px = tr \*. (4)

and satisfy Ward identities

0z,

winz — (k
k ( i n) apk+n7

k+n>1. (5)



w algebras

Two-matrix models possess W-representation

a n
4 = A—A)| -1 = tr A\X.
(o) =coe (n40) 1 i

and satisfy Ward identities

0z,

winz — (k
k ( i n) apk+n7

k+n>1.

with W operators defined as

0 \\" ()
tr </\%/\) :;pka_n.
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w algebras

After all W/ algebra elements are explicitly given by recursion

k+n
W,E"H me k+m—i—Zm W('7 for k+n>0,
m>0
(7)
W, 0+ =, otherwise, (8)

with the base
0 = 6o. (9)
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Generalized W algebras

Generalization of

Z,(p) = exptr (A(?g/\/\) -1, (10)

which retrieved a lot of attention recently, is

ZiM(p) = exptr ((Aa%)m/\)n 1. (11)



Generalized W algebras

The question arises: What is the algebra of constrains on

Z(m (p) = exptr ((/\(%) m/\) " 1? (12)



Generalized W algebras

Obtained algebras got the name generalized w algebras.
Non-recurive definition for this case turned out to be

8 m n N(m7n)
tr((/\a—/\) /\) :;pka_n.



Generalized W algebras

Recursive one is of new zig-zag type

W3 —
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Figure: Structure of recursive procedure for W,
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Generalized W algebras

The recursion itself is

/V\V/;Emm) _ /V\V/lgm,n—i-1|0)’

forn+ k>0
k+n—1
W(m n|ll+1) Z Wkrrn|/ + Z 2
r>0
forn>20

12/(m,n+1|0 a/(m,nlm
o) _ igtmoim)

Wk(m,uo) = Ok 0,

Wk(m’"“) =0 otherwise.

Wk(T;""),

(14)

(16)
(17)

(18)
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What exactly was generalized?

H(™ = tr ((A%)m/\>n (19)

The W-representation of generalized models Z\™ becomes

Defining

Zim — M 1, (20)

While for non-generalized partition functions we have

Z, =70 = M’ 1, (21)

Clearly, the transition was made from one series of operators
H,(,l) to the set of similar ones H,(,m).



What exactly was generalized?

m=4 m—3 m=2

N .
H® HY = E4 //H(z) m=1
HE / HY = &

6Wp = H H? = HY

VS e :
HY =R Lo =H" Y =g
HTY = Ry HO =

Figure: Commutative subalgebras (integer rays) of Wi algebra
depicted on a 2d lattice
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Averages in one-matrix models

(f(tr X¥)) :/dX f(tr X¥)etr VO (22)

as an eigenvalue integrals (for Hermitian case)

() = [ d'x A% (e (Z V(x,->> . (23)

where
N

A(x) = [T (i =) (24)

ij=1
i<j
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[-deformation is important. That's why:

>

>
>

“Temperature” in statistical physics, interpolation
between f =1/2,1,2

Central chargein CFT c=1-6 <\/B — ﬁ)
AGT-related equiviariant parameters in Nekrasov

functions: g = —Z—;

Non trivial coupling g = (8 — 1) in Calogero model.
Jack polynomials — eigenfunctions

more. ..
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[-deformation

Hamiltonians H,Sm) can be rewritten in terms of eigenvalues,

too
H{™ = tr <(/\(%) /\>
(25)

= Z (0™ X)),

where

;0 1
=) (1 Py). 2
al a)\’ + P A[_)\J( 'J) ( 6)
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[-deformation

Therefore, corresponding [3-deformed W—algebras should be
non-recursively defined as

S (o)) D e

1

How could they be recursively defined?
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Thank you for attention!
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