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Matrix Models 101

Matrix Models capture the most interesting theoretical
properties of generic field/string theory and allow to

▶ study the “non-perturbative” properties of integrals

▶ their interplay with the group/symmetry structures

▶ avoid additional complexities of functional integration
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Matrix Models 101

Example
Partition function

Z (t) =

∫
dXetrV (X ) (1)

with measure

dX =
∏
i ,j

dXij (2)

and potential

V (X ) =
∑
i≥0

tkX
k (3)
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Z (t) =
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is invariant under action of symmetry
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and, therefore, satisfy Ward identities

LnZ (t) = 0, n ≥ −1, (3)
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Example
Partition function

Z (t) =

∫
dXetrV (X ) (1)

satisfy Ward identities

LnZ (t) = 0, n ≥ −1, (2)

where

Ln =
∑
k≥0

ktk
∂

∂tn+k
+

n∑
k=0

∂2

∂tk∂tn−k
. (3)
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Example
Partition function

Z (t) =

∫
dXetrV (X ) (1)

satisfy Ward identities

LnZ (t) = 0, n ≥ −1, (2)

where Ln-s form a simplest W̃ algebra of constraints

[Ln, Lm] = (n −m)Ln+m. (3)
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Matrix Models 101

Example
Partition function

Z (t) =

∫
dXetrV (X ) (1)

satisfy Ward identities

LnZ (t) = 0, n ≥ −1, (2)

where Ln-s form a simplest W̃ algebra of constraints , which
can be solved, giving W -representation of matrix model

Z (t) = eW (t) · 1. (3)
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Matrix model Z (t) is

▶ Matrix integral

▶ Solution to the set of W̃ constraints

▶ W -representation
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W̃ algebras

Two-matrix models possess W -representation

Zn(p) = exp tr

(
Λ
∂

∂Λ
Λ

)n

· 1, pk = tr Λk . (4)

and satisfy Ward identities

W̃
(n)
k Zn = (k + n)

∂Zn

∂pk+n
, k + n ≥ 1. (5)

with W̃ operators defined as

tr

(
Λ
∂

∂Λ
Λ

)n

=
∑
k

pkW̃
(n)
k−n. (6)
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W̃ algebras

After all W̃ algebra elements are explicitly given by recursion

W̃
(n+1)
k =

∑
m≥0

pmW̃
(n)
k+m +

k+n∑
m=1

m
∂

∂pm
W̃

(n)
k−m for k + n ≥ 0,

(7)

W̃ k
(n + 1) = 0, otherwise, (8)

with the base
W̃

(0)
k = δk,0. (9)
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Generalized W̃ algebras

Generalization of

Zn(p) = exp tr

(
Λ
∂

∂Λ
Λ

)n

· 1, (10)

which retrieved a lot of attention recently, is

Z (m)
n (p) = exp tr
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∂
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Generalized W̃ algebras

The question arises: What is the algebra of constrains on

Z (m)
n (p) = exp tr

((
Λ
∂

∂Λ

)m

Λ

)n

· 1? (12)
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Generalized W̃ algebras

Obtained algebras got the name generalized W̃ algebras.
Non-recurive definition for this case turned out to be

tr

((
Λ
∂

∂Λ

)m

Λ

)n

=
∑
k

pkW̃
(m,n)
k−n . (13)
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Generalized W̃ algebras
Recursive one is of new zig-zag type

. . .

. . .

. . .

...

W̃
(m,0)
k

= W̃
(m,1|0)
k

W̃
(m,1|m)
k

W̃
(m,2|m)
k

W̃
(m,3|m)
k

W̃
(m,n|m)
k

W̃
(m,1)
k

= W̃
(m,2|0)
k

W̃
(m,n)
k

= W̃
(m,n+1|0)
k

W̃
(m,2)
k

= W̃
(m,3|0)
k

W̃
(m,3)
k

= W̃
(m,4|0)
k

W̃
(m,1|1)
k W̃

(m,1|2)
k

W̃
(m,1|m−1)
k

Figure: Structure of recursive procedure for W̃
(m,n)
k operators
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Generalized W̃ algebras
The recursion itself is

W̃
(m,n)
k = W̃

(m,n+1|0)
k , (14)

for n + k > 0

W̃
(m,n|l+1)
k =

∑
r≥0

prW̃
(m,n|l)
k+r +

k+n−1∑
r=1

r
∂

∂pr
W̃

(m,n|l)
k−r , (15)

for n > 0
W̃

(m,n+1|0)
k = W̃

(m,n|m)
k , (16)

W̃
(m,1|0)
k = δk,0, (17)

W̃
(m,n|l)
k = 0 otherwise. (18)
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What exactly was generalized?

Defining

H (m)
n = tr

((
Λ
∂

∂Λ

)m

Λ

)n

(19)

The W -representation of generalized models Z
(m)
n becomes

Z (m)
n = eH

(m)
n · 1. (20)

While for non-generalized partition functions we have

Zn = Z (1)
n = eH

(1)
n · 1. (21)

Clearly, the transition was made from one series of operators
H

(1)
n to the set of similar ones H

(m)
n .



14/21

What exactly was generalized?

Defining

H (m)
n = tr

((
Λ
∂

∂Λ

)m

Λ

)n

(19)

The W -representation of generalized models Z
(m)
n becomes

Z (m)
n = eH

(m)
n · 1. (20)

While for non-generalized partition functions we have

Zn = Z (1)
n = eH

(1)
n · 1. (21)

Clearly, the transition was made from one series of operators
H

(1)
n to the set of similar ones H

(m)
n .



14/21

What exactly was generalized?

Defining

H (m)
n = tr

((
Λ
∂

∂Λ

)m

Λ

)n

(19)

The W -representation of generalized models Z
(m)
n becomes

Z (m)
n = eH

(m)
n · 1. (20)

While for non-generalized partition functions we have

Zn = Z (1)
n = eH

(1)
n · 1. (21)

Clearly, the transition was made from one series of operators
H

(1)
n to the set of similar ones H

(m)
n .



14/21

What exactly was generalized?

Defining

H (m)
n = tr

((
Λ
∂

∂Λ

)m

Λ

)n

(19)

The W -representation of generalized models Z
(m)
n becomes

Z (m)
n = eH

(m)
n · 1. (20)

While for non-generalized partition functions we have

Zn = Z (1)
n = eH

(1)
n · 1. (21)

Clearly, the transition was made from one series of operators
H

(1)
n to the set of similar ones H

(m)
n .



15/21

What exactly was generalized?

n

m=1m=−1

m = 2m = −2 m = −3 m = −4 m = 4 m = 3

H
(−0)
−1 = F0 H

(0)
1 = E0

H
(−1)
−1 = F1 H

(1)
1 = E1

H
(−2)
−1 = F2 H

(2)
1 = E2

H
(−3)
−1 = F3 H

(3)
1 = E3

H
(−4)
−1 = F4 H

(4)
1 = E4

L0 = H
(1)
0

6W0 = H
(2)
0

H
(3)
0

H
(4)
0

H
(1)
2

H
(2)
2

H
(1)
3

H
(−1)
−2

H
(−2)
−2

H
(−1)
−3

Figure: Commutative subalgebras (integer rays) of W1+∞ algebra
depicted on a 2d lattice
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β-deformation

Example
Averages in one-matrix models〈

f (trX k)
〉
=

∫
dX f (trX k)etrV (X ) (22)

as an eigenvalue integrals (for Hermitian case)

⟨f (x)⟩ =
∫

dNx∆2(x) exp

(
N∑
i=1

V (xi)

)
f (x), (23)

where

∆(x) =
N∏

i ,j=1
i<j

(xi − xj). (24)



16/21

β-deformation

Example
Averages in one-matrix models〈

f (trX k)
〉
=

∫
dX f (trX k)etrV (X ) (22)

as an eigenvalue integrals (for Hermitian case)

⟨f (x)⟩ =
∫

dNx∆2(x) exp

(
N∑
i=1

V (xi)

)
f (x), (23)

where

∆(x) =
N∏

i ,j=1
i<j

(xi − xj). (24)



16/21

β-deformation

Example
Averages in one-matrix models〈

f (trX k)
〉
=

∫
dX f (trX k)etrV (X ) (22)

as an eigenvalue integrals (for Hermitian case)

⟨f (x)⟩ =
∫

dNx∆2(x) exp

(
N∑
i=1

V (xi)

)
f (x), (23)

where

∆(x) =
N∏

i ,j=1
i<j

(xi − xj). (24)



16/21

β-deformation

Example
Averages in one-matrix models〈

f (trX k)
〉
=

∫
dX f (trX k)etrV (X ) (22)

as an eigenvalue integrals (for Hermitian case)

⟨f (x)⟩ =
∫

dNx∆2β(x) exp

(
N∑
i=1

V (xi)

)
f (x), (23)

where

∆(x) =
N∏

i ,j=1
i<j

(xi − xj). (24)



17/21

β-deformation

β-deformation is important. That’s why:

▶ “Temperature” in statistical physics, interpolation
between β = 1/2, 1, 2

▶ Central charge in CFT c = 1− 6
(√

β − 1√
β

)
▶ AGT-related equiviariant parameters in Nekrasov

functions: β = − ϵ1
ϵ2

▶ Non trivial coupling g = β (β − 1) in Calogero model.
Jack polynomials — eigenfunctions

▶ more. . .
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β-deformation

Hamiltonians H
(m)
n can be rewritten in terms of eigenvalues,

too

(25)
H (m)

n = tr

((
Λ
∂

∂Λ

)m

Λ

)n

=
∑
i

((λidi)
m λi)

n
,

where

di =
∂

∂λi
+
∑
j ̸=i

1

λi − λj
. (26)
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Hamiltonians H
(m)
n can be rewritten in terms of eigenvalues,

too

(25)
H (m)

n = tr

((
Λ
∂

∂Λ

)m

Λ

)n

=
∑
i

((λidi)
m λi)

n
,

where

dβi =
∂

∂λi
+
∑
j ̸=i

1

λi − λj
(1− Pij) . (26)



19/21

β-deformation

Therefore, corresponding β-deformed W̃ -algebras should be
non-recursively defined as∑

i

((
λid

β
i

)m
λi

)n
=
∑
k,i

λk
i W̃

(m,n)
β,k . (27)

How could they be recursively defined?
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Thank you for attention!
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