Selection of muon neutrino interactions with an increased acceptance for the updated T2K oscillation analysis

Daria Fedorova^{1,2}, Alexander Izmaylov¹

¹Institute for Nuclear Research (INR RAS) ²Moscow Institute of Physics and Technology

Quarks-2024, 19-24 May 2024

*Supported by RSF 22-12-00358

Tokai-to-Kamioka (T2K) experiment in Japan

- Flagship long-baseline accelerator neutrino project
- Study oscillations in both appearance and disappearance channels with muon (anti)neutrino beam
- Far detector: water Cherenkov Super-Kamiokande

Nature volume 580, pages 339–344 (2020)

Latest T2K results

- - mass hierarchy

Near detector ND280

ND280:

- 2.5° off-axis (Super-K direction)
- Sub-detectors inside UA1 magnet (0.2 T magnetic field)
- Measure neutrino interactions, neutrino flux \bullet composition, intrinsic ν_{e} contamination
- Constrain cross-section and flux uncertainties for oscillation analysis (OA)

ND280 Upgrade — further reduction of systematic uncertainties for OA:

- Lower thresholds for neutrino interaction products, ability to reconstruct neutron kinematics, improved geometric acceptance
- Installation of new modules finished in May 2024
- See talks by Angelina and Alexander

E.g.: uncertainties on 1-Ring ν_{μ} and ν_{e} events at Super-K are reduced from ~15% to < 5% with near detector constraints

Neutrino beam

- modes by changing polarity of focusing horns
- Flux simulation tuned with NA61/SHINE hadron production data
- NA61/SHINE replica target data (Eur. Phys. J. C 76, 617 (2016)):

 - Include exiting kaons, protons and pions
 - Reduce uncertainties at higher energies
- Further flux fine tuning based on in-situ measurements with beam monitors

Neutrino interaction model

- NEUT to simulate neutrino interactions (Eur. Phys. J. Spec. Top. 230, 4469–4481 (2021)
- Charged Current Quasi Elastic (CCQE) dominant reaction for T2K energies:
 - Benhar Spectral Function (SF) model for nuclear structure
 - Include Pauli Blocking
- 2p2h:
 - Base model: Valencia 2p2h
 - Better description of 2p2h pn/nn pairs contribution
- **Other:**
 - New resonance decay uncertainties
 - New Nucleon Final State Interactions (FSI) uncertainty (Physical review D 109, 072006 (2024))

ND280 samples: 2022 analysis

- For ND280 fit use samples of muon (anti)neutrino interactions in FGDs enhanced in particular reconstructed topologies. Example: $CC0\pi$, $CC1\pi$ etc
- Fit kinematics distribution to constrain flux and crosssection model parameters

Examples of ND280 samples

$CC1\pi$ in FGD2

CC-Other in FGD1

Towards Oscillation Analysis 2024

- Near detector:
 - Improved particle tracking
 - New parameterisation for detector systematics
 - " 4π " selection in neutrino mode
 - Updated cross-section systematics model
- Far detector:
 - Include data collected in 2021 (first run with Gd (0.01%) in Super-K): +9% statistics in neutrino mode
 - New multi-ring $\nu_e CC1\pi^+$ sample (+60% statistics)
 - Updated detector systematics

tor systematics de atics model

Introduction of " 4π " samples

Previous ND280 analyses mainly focused on forward-going muon tracks

due to its geometry

- In contrast, the far detector Super-Kamiokande has the full " 4π " acceptance

Introduction of " 4π " samples

- TOF between ND280 modules can be used to determine **muon direction**:
 - Forward (FWD) or High-angle Forward (HA-FWD)
 - Backward (BWD) or High-angle Backward (HA-BWD)
- Muon momentum is reconstructed:
 - FWD, BWD using curvature in TPC
 - HA-FWD, HA-BWD using track length in FGD/ECal/SMRD

Example of backward-going muon track

ND280 fit inputs in neutrino mode

- 1. Select muon candidate
- 2. Further distribute events into samples according to other tagged products: protons, pions, photons

" 4π " selections in neutrino mode

-0.6

	Average purity for CC, %			
	FGD1	FGD2		
FWD	92.2	90.3		
BWD	79.8	75.0		
HA-FWD	89.0	88.5		
HA-BWD	78.7	76.1		

Example of $\cos\theta$ distributions for different selected samples

0.2

Cosθ

0.6

ND280 detector systematic errors

Total systematics: **detector** + cross-section model + flux $\sim 10\%$

	Systematic error source	$CC-0\pi 0$	p FWD	CC-0π0	Dp BWD	$CC-0\pi$	0p HA	
	-	FGD1	FGD2	FGD1	FGD2	FGD1	FGD2	
S	TPC PID	0.3436	0.6731	1.387	1.9316	0.2987	0.7447	
Ö	FGD PID	0.2717	0.1081	0.1876	0.1138	0.212	0.1141	
Ę.	Momentum resolution	0.0633	0.0523	0.3414	0.183	0.0542	0.0416	
В	Momentum scale	0.0058	0.016	0.311	0.5435	0.0085	0.0149	
	Range momentum resolution	0	0	0	0	0.0404	0.0433	
	MomBias from vertex migration	0.0139	0.0276	1.997	2.1151	0.029	0.026	
t t	TOF resolution	0.0059	0.002	2.5164	0.4726	1.2319	1.5636	
S	B Field distortion	0.0035	0.0088	0.025	0.0779	0.0076	0.0044	
	ECal energy resolution	0	0	0	0	3.496	3.6844	
0)	ECal energy scale	0	0	0	0	2.7947	2.9748	
Ľ	Charge ID efficiency	0.0063	0.0038	0.0536	0.0044	0	0	=
ţ	TPC cluster efficiency	0.0062	0.0078	0.0126	0	0	0	
Ċ	TPC tracking efficiency	0.3614	0.4755	0.3516	0.3557	0.6219	1.0018	
Ф	TPC-FGD matching efficiency	0.0723	0.1579	0.0071	0.0040	0.0043	0.0134	
) L	FGD hybrid tracking efficiency	0.6365	0.2306	0.6243	0.2573	0.8519	0.4403	
<u> </u>	Michel electron efficiency	0.1924	0.1752	0.1295	0.1053	0.1584	0.1292	
0	Pile-up	0.4286	0.5037	0.4274	0.5037	0.4283	0.5037	
) J	FGF mass	0.6005	0.3845	0.4808	0.2919	0.5586	0.3659	
0	OOFV background	0.4035	0.6866	1.9936	9.0665	1.1823	1.0857	
S	TPC-ECal matching efficiency	0.5735	0.3700	0.8822	0.3114	0.2220	0.2595	
Û	TPC-P0D matching efficiency	0	0	0.3715	0.1058	0	0	
Q	FGD-ECal matching efficiency	0.0001	0	0	0	1.3793	2.8525	
	FGD-ECal-SMRD matching	0	0	0	0	0.9271	0.9470	
5	ECal tracking efficiency	0.2885	0.3242	0.4054	0.3818	0.5473	0.5770	
С С	ECal PID	0.0460	0.0321	0.0588	0.0755	0.1012	0.1219	
•••	ECal photon pile-up	0.7621	0.7621	0.7617	0.7621	0.7621	0.7621	
O)	Pion secondary interaction	0.2671	0.2497	0.1328	0.1482	0.2569	0.1823	
N	Proton secondary interaction	0.0022	0.0025	0.0035	0	0.0389	0.0297	
	Sand muon background	0.0989	0.0804	0.1514	0.0810	0.0344	0.0117	
Total detector systematics 1.3438 1.3209 4.0209 10.0107 3.1300 0.1923								

Samples in antineutrino mode

- No " 4π " samples for OA2024 due to less statistics \rightarrow mainly forward-going tracks
- Samples for ND280 fit: $CC0\pi$, $CC1\pi$, CC-Other
- Background contamination from neutrino interactions \rightarrow \bullet constrain with a dedicated selection
- Total detector systematic error up to 4.5% (*CC*-Other FGD2)

 $\bar{\nu}_{\mu}CC$ selection efficiency depending on momentum/cos θ

Reconstructed Muon Momentum, MeV/c

Neutrino background in antineutrino mode

- Same samples as for the antineutrino selection: $CC0\pi$, $CC1\pi$, CC Other
- Tagged μ^- candidate instead of μ^+
- Total detector systematic error up to 2.3% (CC Other FGD1)

 $u_{\mu}CC$ selection efficiency depending on momentum/cos θ

Reconstructed Muon Momentum, MeV/c

Summary

- T2K experiment leads the field of neutrino oscillation studies with accelerators: - CP conservation excluded at 90% CL

 - Leading measurements of "atmospheric" parameters
- Now collecting data with upgraded neutrino beam and renewed near detector ND280
- **New T2K oscillation analysis result** being prepared for Neutrino 2024
- Among other updates T2K OA2024 largely based on ND280 samples with increased phase-space acceptance:
 - Make ND280 acceptance closer to Super-K
 - Include topologies with large momentum transfers
 - Increase ND280 statistics by 15% -
 - Preparatory step for a move from ND280 to ND280 Upgrade

Backup

T2K+SK joint analysis

- Opposite octant preference cancellation (esp. NH)
- NO preference increases slightly
- Main differences are in δ_{CP} and $\sin^2 \theta_{23}$

	T2	K+SK	$\theta_{23} < \frac{\pi}{2}$	$\theta_{23} > \frac{\pi}{2}$
	posterior		0.39	0.61
y	$\Delta m^2 > 0$	0.90	0.37	0.53
	$\Delta m^2 < 0$	0.10	0.02	0.08

T2K+SK joint analysis

 Frequentist analysis will also be in the paper (soon) but this only gets around the prior dependence, and is otherwise pretty consistent.

We usually highlight the most conservative conclusion.

For some combinations of prior, MO, and parameterisation: the CPC conserving point $\delta = \pi$ is still included within 2σ .

 Plus larger than expected effects in $CC1\pi^+$ systematic study.

Improvements in particle tracking

***New algorithm in TPC – TREx:**

- New pattern recognition algorithm
- 3D reconstruction with no preferential direction
- Vertexing in TPCs

***FGD**:

• Electron hypothesis in FGD Particle identification, overall updated FGD PID

***POD**

- Recover short tracks in downstream P0D with TPC based filtering
- Improve high-angle tracking (short in Z objects)

***ECal**

- Few hits clusters → tag low-energy EM activity
- Improved TPC-ECal matching, filter individual ECal hits to recover TPC-ECal objects with few hits in ECals

Through-going muon emitting a δ -ray inside the TPC. TREx identifies three tracks instead of two and connect them using a Junction

T2K results

Figure 1 – Left: Constraints on atmospheric oscillation parameters and comparison with NO νA ,¹⁷ SuperK,¹⁸ and IceCube.¹⁹ Right: Constraints from an alternative fit of μ -like samples where the atmospheric parameters for neutrinos $(\sin^2 \theta_{23}, \Delta m_{32}^2)$ and antineutrinos $(\sin^2 \overline{\theta}_{23}, \Delta \overline{m}_{32}^2)$ are decoupled from each other. The joint $\nu_e + \nu_\mu$ analysis contours from the left figure are also shown for comparison.

Table 2.2: Oscillation parameters values with and without the reactor constrain obtained in the frequentist analysis from the data fit [77].

Parameter	With reactor constraint		Without reactor constraint			
	Normal ordering	Inverted ordering	Normal ordering	Inverted ordering		
$\delta_{\rm CP}$ (rad.)	$-1.97\substack{+0.97\\-0.62}$	$-1.44\substack{+0.56\\-0.59}$	$-2.22\substack{+1.25\\-0.81}$	$-1.29\substack{+0.72\\-0.83}$		
$\mathrm{sin}^2 heta_{13}/10^{-3}$			$28.0\substack{+2.8\\-6.5}$	$31.0^{+3.0}_{-6.9}$		
$\sin^2\theta_{23}$	$0.561\substack{+0.019\\-0.038}$	$0.563\substack{+0.017\\-0.032}$	$0.467\substack{+0.106\\-0.018}$	$0.466\substack{+0.103\\-0.019}$		
$\Delta { m m}_{32}^2/10^{-3}({ m eV}^2)$	$2.494\substack{+0.041\\-0.058}$		$2.495\substack{+0.041\\-0.058}$			
$ \Delta { m m}_{31}^2 /10^{-3}({ m eV}^2)$		$2.463\substack{+0.042\\-0.056}$		$2.463\substack{+0.043\\-0.055}$		

