Advanced Mo-based Rare process Experiment

Vladimir Kazalov on behalf of the AMoRE Collaboration

> Baksan Neutrino Observatory INR RAS

v.kazalov@gmail.com

AMoRE collaboration

10 Countries, 26 Institutions - Korea, Germany, Ukraine, USA, Russia, China, Thailand, Indonesia, India, Pakistan

The AMORE-experiment's challenge

The goal of the AMoRE (Advanced Mo-base Rare process Experiment) is to search for neutrinoless double beta decay (0υββ) of ¹⁰⁰Mo using Mo-based scintillating crystals and low-temperature sensors.

Why ¹⁰⁰Mo is chosen for 0υββ experiment

- ✓ High Q-value of 3034,34 keV
- \checkmark High natural abundance of 9.7%
- \checkmark Relatively short half-life ($0 \cup \beta \beta$) expected from theoretical calculation

Isotope	Q (MeV)	Abund. %
⁴⁸ Ca	4,271	0,19
⁷⁶ Ge	2,040	7,8
⁸² Se	2,995	8,7
¹⁰⁰ Mo	3,034	9,7
¹¹⁶ Cd	2,802	7,5
¹²⁴ Sn	2,228	5,8
¹³⁰ Te	2,533	34,1
¹³⁶ Xe	2,479	8,9
¹⁵⁰ Nd	3,367	5,6

Production of ¹⁰⁰Mo and ^{48depl}Ca

• Production of the ¹⁰⁰Mo isotope:

- JSC "PO Electrochemical Plant" (ECP), Krasnoyarsk, Russia
- ¹⁰⁰MoO₃ powder:
 - \rightarrow ¹⁰⁰Mo enrichment: ~ 95%
 - \rightarrow Radioactive purity:

ICP-MS at CUP	U: ~ 0.2 ppb	Th: ~ 0,05ppb
HPGe at BNO INR RAS	²²⁶ Ra: ≤ 8 mBq/kg	²²⁸ Ac: ≤ 3.5 mBq/kg

- Calcium carbonate (calcium formate) enriched by ⁴⁰Ca and depleted by ⁴⁸Ca:
 - Elektrokhimpribor (EKP), Lesnoy, Russia
 - ⁴⁰CaCO₃ powder:
 - ⁻ ⁴⁸Ca < 0,001%
 - Radioactive purity: $U \le 0.1$ ppb, Th ≤ 0.1 ppb, Sr= 1 ppm, Ba = 1 ppm,

²²⁶Ra = 5 mBq/kg (late samples from NEOHIM 1.4 mBq/kg), ²²⁸Ac (228Th) = 1 mBq/kg

• Lithium carbonate (old USSR)

^{48depl}Ca¹⁰⁰MoO₄ and Li₂¹⁰⁰MoO₄ crystals

- ^{48depl}Ca¹⁰⁰MoO₄ production of JSC "FOMOS-Materials" 13 crystals, AMoRE-pilot, AMoRE-I
- Li₂¹⁰⁰MoO₄ grow by Institute of Inorganic Chemistry SB RAS NIIC, (Low temp. gradient), AMoRE-I, AMoRE-II
- Li₂¹⁰⁰MoO₄ grow by Center for Underground Physics (CUP) (Czochralski method)

Absolute light yield of CMO crystals:

~ 4,900 ph/MeV, at room temperature, (H.J. Kim et al., IEEE TNS 57 (2010) 1475) ~ 30000 ph/MeV at a temperature of 10 mK

CMO crystals have the highest light yield among Mo-containing crystals.

Principle of AMoRE detector

Time (ms)

Scintillating crystal

- ^{48depl}Ca¹⁰⁰MoO₄
- ¹⁰⁰Mo enriched: > 95 %
- ^{48}Ca depleted: < 0.001 %

MMC & SQUID

- MMC: Metallic Magnetic Calorimeter
- Magnetization changes with temperature.
- Magnetization change (flux) can be

measured as a voltage by SQUID

Detection process:

 $\begin{array}{l} \textbf{Energy} \rightarrow \textbf{Temperature} \rightarrow \textbf{Magnetization} \rightarrow \\ \textbf{Magnetic flux} \rightarrow \textbf{Voltage} \end{array}$

Signal processing and analysis

Reconstruction for improving energy resolution and β/α discrimination power (DP):

-Butterworth bandpass filter — mainly for noise suppression:

- pulse amplitude: pulse height or a least square fit to the template signal.
- Stabilization heater signal for gain drift corrections.

Energy calibration

Particle IDentifications, CMO and LMO

- CMO shows better discrimination power light yield: CMO > LMO.
- LMO has much less *α* contamination.

Simultaneous heat & light measurements

 Particle discrimination for rejection of αinduced background

Discrimination Power (DP):

$$DP \equiv \frac{|\mu_{\beta/\gamma} - \mu_{\alpha}|}{\sqrt{\sigma_{\beta/\gamma}^2 + \sigma_{\alpha}^2}}$$

 $\boldsymbol{\mu}$ - the mean value of the distribution

 σ - standard deviation of this distribution

AMoRE project

Этапы эксперимента	Pilot	AMoRE-I	AMoRE-II
Crystal assembly			
Crystals	^{48depl} Ca ¹⁰⁰ MoO ₄ (CMO)	^{48depl} Ca ¹⁰⁰ MoO ₄ , ^{nat} Li ₂ ¹⁰⁰ MoO ₄ (LMO)	^{nat} Li ₂ ¹⁰⁰ MoO ₄
Crystal/Mass	6/1.9 kg	18/6.2 kg	~ 400/150 kg
Background Goal (counts/keV/kg/yr.)	10-1	< 10 ⁻²	< 10 ⁻⁴
Sensitivity , $T_{1/2}(yr.)$	~ 1.0x10 ²³	~ 3.3x10 ²⁴	~ 5.0x10 ²⁶
Sensitivity, neutrino mass m _{ββ} (мэB)	1200-2100	140-270	13-25
Scheduled Dates	2015-2018	2020-2022	2024-2028
Location	Yangyang Underground Laboratory (Y2L), S. Korea	Y2L	Yemi Underground Laboratory (YemiLab), S. Korea

Yang Yang Underground Laboratory (Y2L)

12

Background spectra AMoRE-I after alpha background rejection

• 17 crystals excluding one LMO (for very poor β/α discrimination power) Exposure = 8.02 kgXMoO4 • yr = 3.88 kg100Mo • yr.

CMO has higher alpha backgrounds and rejection power is high LMO has lower alpha backgrounds and rejection power is low

Live exposure	Bkg. @ $Q_{\beta\beta}$ / ckky		
Total (8.02 kg _{XMoO4} yr)	0.040 ± 0.004		
СМО (6.19 kg _{XMoO4} yr)	0.039 ± 0.004		
LMO (1.83 kg _{XMoO4} yr)	0.045 ± 0.009		
10 9 8 7 6 5 4 3 2 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0			

¹⁰⁰Mo 0νββ limit from AMoRE-I: $T_{1/2}^{0\nu\beta\beta} > 3,4\times10^{24}$ years Current best limit 1.8×10²⁴ years by CUPID-Mo

Yeongduk Kim (CUP IBS) NPB 2024, Hong Kong

AMoRE-II @Yemilab

AMoRE-II detector

• The module designs are done for 5-cm and 6-cm LMOs.

Preliminary

Ultimate maximum: 50+26 towers \cdot 12 crystal/tower \sim 912 crystals

- LMO crystals: Ø5cm x H.5cm (310g) and Ø6cm x H.6cm (520g)
- Mass: ~80kg ¹⁰⁰Mo (~150kg crystal mass w. ~ 400 LMO crystals)

First Phase: 9 x10 ~ 24kg crystal mass

Limits & Sensitivities

- AMoRE-I result corresponds to $m_{\beta\beta} < 200-340 \text{ meV}$
- AMoRE-II for $T_{1/2}^{0\nu\beta\beta} > 5 \times 10^{26}$ years by 100 kg of ¹⁰⁰Mo × 5 years running.

Thank you for your attention!

Back up slides

Cosmic ray muon background at YemiLab

Access tunnel with more overburden shortened to ~730 m by a simulation study considering a detail profile of the landscape.

□ Muon reduction rate @ HD with a simulation: ~ 8 × 10⁻⁶

Background of AMoRE-II

- A few items will be improved by replacing the materials.
- Expect to reach 10⁻⁴ ckky level.

Yeongduk Kim (CUP IBS) NPB 2024, Hong Kong

Sensitivity of AMoRE-II

