Separation of different top quark production processes in a phase space using Neural Networks

E. Boos, V. Bunichev, L. Dudko, M. Perfilov, P. Volkov, G. Vorotnikov

Scobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University (SINP MSU)

QUARKS-2024 XXII International Seminar on High-Energy Physics 2024, May, 20-24th

- Single and double resonant top quark production with the same final signature tWb
 - schemes of single resonant top quark highlighting
 - Preference of using the full tWb scheme
 - Separation between SR and DR top quark production in phase space with DNN
- Triple and Quadruple resonant top quark production with the same final signature tttWb

Top quark and BSM physics

Single Top quark production CSs

Top pair and Single Top production

Top pair (tT)

production

Leading order (LO) process $2 \rightarrow 2$: tW-production

Next to leading order (NLO), O(1/log(mt/mb)), 2→3: tWb-production

Figure 1: Diagrams for the process $gg \rightarrow t\bar{b}W^-$.

Squared matrix element structure

Different schemes for tWb processes highlighting

DR2 (Diagram subtraction Scheme) Phys. Rev. D 61, 034001

DS1, DS2 schemes EPJC 77, 34 (2017)

- introduction of the local subtraction term:
 - cancel the ME from double top production
 - gauge invariant
 - decreases quickly away from the resonant region

$$|\mathcal{A}_{tWb}|_{\mathrm{DS}}^2 = |\mathcal{A}_{1t} + \mathcal{A}_{2t}|^2 - \mathcal{C}_{2t}$$

Schemes for tW processes highlighting – the main idea

• What is the most preferable scheme of tW highlighting for the AnomWtb couplings searches? $\mathcal{L} = \frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} V_{tb} (f_V^L P_L + f_V^R P_R) t W_{\mu}^{-} + h.c.$

EPJ Web Conf., 158 (2017) 04004

- different schemes of tW highlighting have different sensitivity to the anomalous coupling
 top pair production is also sensitive to the anomalous Wtb couplings
- It's more preferable to use **full gaugeinvariant set of diagrams** (without any diagrams removal)
- The IDEA is to separate double and single top resonant contributions to tWb final state using Neural Networks

tWb final state: Monte-Carlo simulation

- For DNN training: split sets of events
- Hereafter: a) leading subprocess $gg \rightarrow ...$ b) all decays included
- 13 diagrams in total, 4 sets of events:

Sets of events:

"TW+b"

• **For DNN training**: different kinematic variables with different behaviour for different processes.

set of main low
 level variables (for
 NN to reveal
 processes regularity)

- set of optimal variables (based on Feynman diagrams analysis)

Physics of Atomic Nuclei 71, 388–393 (2008) International Journal o f Modern Physics A V ol. 35, No. 21 (2020) 2050119

Phys.Lett.B 534 (2002) 97-105

DNN results: single and double top resonant separation (1)

NN separation power

- **DNN successfully separates** double and single resonant contributions to tWb final state
- tT and tW interference "smears" between classified events

• DNN results: single and double top resonant separation (2)

DNN discriminant cut: < 0.9: double resonant contribution >= 0.9: single resonant contribution

Модель	Сечени	Curves [rfs]							
	DNN < 0.9	$\mathrm{DNN} \geq 0.9$	Сумма, [пој						
"tī"	14.94	0.26	15.20						
" $\bar{t}W$ +" DR1	0.26	0.44	0.7						
" $tW-$ " DR1	0.26	0.44	0.7						
"t \bar{t} tW"	15.18	0.84	16.02						
интерференция	-0.28 (1.8%)	-0.30 (36%)	-0.6 (3.7%)						

EFT and Anomalous Couplings approach

AnomWtb: CMS analysis

- «Search for new physics in top quark production in dilepton final states in protonproton collisions at√s= 13 TeV»
 - dilepton final state
 - EFT effects in the top quark production, not in the decay
 - the rates of tW and tT production are used to probe the
 - variations in both rate and kinematic distributions:

 $C_{\phi q}^{(3)}, C_{tW}, C_{tG}, C_{G}$ $C_{\mu G}, C_{cG}$

CMS	35.9 fb ⁻¹ (13 TeV)
Obs. best fit	
68% obs.	

Eur. Phys. J. C 79 (2019) 886

Effective Channel		Observed [TeV ⁻²]			Expected [TeV ⁻²]		
coupling	Channel	Best fit	[68% CI]	[95% CI]	Best fit	[68% CI]	[95% CI]
C_G/Λ^2	ee	-0.14	[-0.82, 0.51]	[-1.14, 0.83]	0.00	[-0.90, 0.59]	[-1.20, 0.88]
	eμ	-0.18	[-0.73, 0.42]	[-1.01, 0.70]	0.00	[-0.82, 0.51]	[-1.08, 0.77]
	μμ	-0.14	[-0.75, 0.44]	[-1.06, 0.75]	0.00	[-0.88, 0.57]	[-1.16, 0.85]
	Combined	-0.18	[-0.73, 0.42]	[-1.01, 0.70]	0.00	[-0.82, 0.51]	[-1.07, 0.76]
$C_{\phi q}^{(3)}/\Lambda^2$	ee	1.12	[-1.18, 2.89]	[-4.03, 4.37]	0.00	[-2.53, 1.74]	[-6.40, 3.27]
	eμ	-0.70	[-2.16, 0.59]	[-3.74, 1.61]	0.00	[-1.34, 1.12]	[-2.57, 2.15]
	μµ	1.13	[-0.87, 2.86]	[-3.58, 4.46]	0.00	[-2.20, 1.92]	[-4.68, 3.66]
	Combined	-1.52	[-2.71, -0.33]	[-3.82, 0.63]	0.00	[-1.05, 0.88]	[-2.04, 1.63]
$\mathrm{C_{tW}}/\Lambda^2$	ee	6.18	[-3.02, 7.81]	[-4.16, 8.95]	0.00	[-2.02, 6.81]	[-3.33, 8.12]
	eμ	1.64	[-0.80, 5.59]	[-1.89, 6.68]	0.00	[-1.40, 6.19]	[-2.39, 7.18]
	μμ	-1.40	[-3.00, 7.79]	[-4.23, 9.01]	0.00	[-2.18, 6.97]	[-3.63, 8.42]
	Combined	2.38	[0.22, 4.57]	[-0.96, 5.74]	0.00	[-1.14, 5.93]	[-1.91, 6.70]
C_{tG}/Λ^2	ee	-0.19	[-0.40, 0.02]	[-0.65, 0.22]	0.00	[-0.22, 0.21]	[-0.44, 0.41]
	eμ	-0.03	[-0.19, 0.11]	[-0.34, 0.27]	0.00	[-0.17, 0.15]	[-0.34, 0.29]
	μμ	-0.15	[-0.34, 0.02]	[-0.53, 0.19]	0.00	[-0.19, 0.18]	[-0.40, 0.35]
	Combined	-0.13	[-0.27, 0.02]	[-0.41, 0.17]	0.00	[-0.15, 0.14]	[-0.30, 0.28]
C_{uG}/Λ^2	ee	-0.017	[-0.22, 0.22]	[-0.37, 0.37]	0.00	[-0.29, 0.29]	[-0.42, 0.42]
	eμ	-0.017	[-0.17, 0.17]	[-0.29, 0.29]	0.00	[-0.26, 0.26]	[-0.38, 0.38]
	μμ	-0.017	[-0.17, 0.17]	[-0.29, 0.29]	0.00	[-0.27, 0.27]	[-0.38, 0.38]
	Combined	-0.017	[-0.13, 0.13]	[-0.22, 0.22]	0.00	[-0.21, 0.21]	[-0.30, 0.30]
C_{cG}/Λ^2	ee	-0.032	[-0.47, 0.47]	[-0.78, 0.78]	0.00	[-0.63, 0.63]	[-0.92, 0.92]
	eμ	-0.032	[-0.34, 0.34]	[-0.60, 0.60]	0.00	[-0.56, 0.56]	[-0.81, 0.81]
	μμ	-0.032	[-0.36, 0.36]	[-0.63, 0.63]	0.00	[-0.58, 0.58]	[-0.84, 0.84]
	Combined	-0.032	[-0.26, 0.26]	[-0.46, 0.46]	0.00	[-0.46, 0.46]	[-0.65, 0.65]

AnomWtb couplings in tWb process

- As a start: (LV, RV) scenario: $\mathcal{L} = \frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} V_{tb} (f_V^L P_L + f_V^R P_R) t W_{\mu}^{-1}$
- Different sets of MC events for one and double resonant top production
 LV(f_V^L=1,f_V^R=0) RV(f_V^L=0,f_V^R=1)

 Kinematic variables as the ones for DNN training:

• Preliminary results for LV/RV scenario separation by DNN

Triple and Quadrupole top quark production

 Processes of three top quarks production in association with W-boson (CS = 1.9 fb) :

Triple top quark production in Standard Model

 Overlapping with four top quark production process (CS = 17 fb) with the same final signature:

- LHC searches for 4 top quarks production: <u>Eur. Phys. J. C 80 (2020) 75</u>
- Set of variables that can be used for DNN training for separation between triple and quadrupole top quark

Conclusion

- Neural Network method to separate double and single resonant top production contributions to tWb final state is presented
- DNN successfully separates double and single top quark contributions to tWb final state
- Different regions of phase space with double and single resonant contribution separated by NN can be further used for Anomalous Wtb operators contribution to Wtb vertex searches analysis
- Preliminary results for LV and RV separation by DNN are presented
- The same strategy is applying to separate triple and quadrupole resonant top production contribution to tttWb final state
- Published results:

<u>Моscow University Physics Bulletin, Allerton Press (New York, N.Y., US), 78, № 6, 707-715</u> Вестник Московского университета. Серия 3: Физика, астрономия, Изд-во Моск. ун-та (М.), 78, № 6, 2360201

• The work is supported by the RSF grant № 22-12-00152