Particle production via $\gamma\gamma$ fusion at hadron colliders with libera

E. V. Zhemchugov, S. I. Godunov, E. K. Karkaryan, V. A. Novikov, A. N. Rozanov, M. I. Vysotsky

 $\begin{array}{c} \text{based on} \\ \text{arXiv:} 2311.01353 \end{array}$

supported by the Russian Science Foundation Grant No. 19-12-00123- Π

QUARKS-2024

 $May\ 20,\ 2024$

Ultraperipheral collisions (UPC) at the LHC

- It is possible to detect protons in forward detectors to reconstruct full kinematics.
- Accessible analytically with equivalent photons approximation (EPA).
- Formulae can be easily adopted for new particles (γ couples to electric charge).

Particle production in UPC

 ${\tt libepa}$ approaches and code were developed while the authors were working on papers

- Phys. Usp. **62**, no.9, 910-919 (2019)
- JHEP **01**, 143 (2020)
- Phys. Rev. D **103**, no.3, 035016 (2021)
- JHEP **10**, 234 (2021)

Many of these results are included in the library documentation as examples.

Particle production in UPC

libepa approaches and code were developed while the authors were working on papers

- Phys. Usp. **62**, no.9, 910-919 (2019)
- JHEP **01**, 143 (2020)
- Phys. Rev. D **103**, no.3, 035016 (2021)
- JHEP **10**, 234 (2021)

Many of these results are included in the library documentation as examples.

It was applied to semi-inclusive processes (where only one of the colliding particles remains intact, and the other disintegrates) in papers

- Eur. Phys. J. C 82, no.11, 1055 (2022)
- Phys. Rev. D 108, no.9, 093006 (2023)
- JETP Lett. **119**, no.1, 5-9 (2024)

Required features

- Proton form factors (including magnetic contribution)
- Fiducial cross section
 For example, typical cuts for particle pair production are
 - $p_T > \hat{p}_T$ transverse momentum of each particle.
 - $|\eta| < \hat{\eta}$ pseudorapidity of each particle.
 - $\sqrt{s_{\min}} < \sqrt{s} < \sqrt{s_{\max}}$ invariant mass of produced pair.
 - $\hat{\omega}_{1,\min} < \omega_1 < \hat{\omega}_{1,\max}$, $\hat{\omega}_{2,\min} < \omega_2 < \hat{\omega}_{2,\max}$ bounds on photons energies due to forward detectors.
- \bullet Survival factor distribution in the impact parameter space is needed

Notations!

The following notation is popular in the literature: \sqrt{s} for the invariant mass of the colliding particles (and W for the invariant mass of the produced particles). However, in what follows \sqrt{s} denotes the invariant mass of the produced particles (invariant mass of the colliding photons).

UPC cross section with EPA

Many references are not provided in this talk, see arXiv:2311.01353 for details. See the review on two photon physics: Budnev et al, Phys. Rep. 15, 181 (1975).

UPC cross section with EPA

Many references are not provided in this talk, see <u>arXiv:2311.01353</u> for details. See the review on two photon physics: Budnev et al, Phys. Rep. 15, 181 (1975).

$$\sigma(AB \to ABX) = \int_{0}^{\infty} d\omega_1 \int_{0}^{\infty} d\omega_2 \, \sigma(\gamma\gamma \to X) \, n_A(\omega_1) \, n_B(\omega_2),$$

UPC cross section with EPA

Many references are not provided in this talk, see <u>arXiv:2311.01353</u> for details. See the review on two photon physics: Budnev *et al*, Phys. Rep. 15, 181 (1975).

$$\sigma(AB \to ABX) = \int_{0}^{\infty} d\omega_1 \int_{0}^{\infty} d\omega_2 \, \sigma(\gamma\gamma \to X) \, n_A(\omega_1) \, n_B(\omega_2),$$

It is convenient to change the integration variables from the photons energies ω_1 , ω_2 to the invariant mass of the produced system $\sqrt{s} = \sqrt{4\omega_1\omega_2}$ and its rapidity $y = \frac{1}{2} \ln \frac{\omega_1}{\omega_2}$:

$$\frac{\mathrm{d}\sigma(AB\to ABX)}{\mathrm{d}\sqrt{s}} = \sigma(\gamma\gamma\to X)\cdot\frac{\mathrm{d}L_{AB}}{\mathrm{d}\sqrt{s}},$$

where L_{AB} is the photon-photon luminosity in the collision of particles A and B,

$$\frac{\mathrm{d}L_{AB}}{\mathrm{d}\sqrt{s}} = \frac{\sqrt{s}}{2} \int_{-\infty}^{\infty} n_A \left(\frac{\sqrt{s}}{2} \mathrm{e}^y\right) n_B \left(\frac{\sqrt{s}}{2} \mathrm{e}^{-y}\right) \mathrm{d}y.$$

EPA spectra

$$\begin{split} \mathcal{J}_{\mu} &= Ze \cdot \bar{\psi} \left[F_1(Q^2) \gamma_{\mu} - \frac{\sigma_{\mu\nu} q^{\nu}}{2m_{\psi}} F_2(Q^2) \right] \psi, \ \sigma_{\mu\nu} = \frac{\gamma_{\mu} \gamma_{\nu} - \gamma_{\nu} \gamma_{\mu}}{2}, \\ G_M(Q^2) &= F_1(Q^2) + F_2(Q^2), \qquad F_1(Q^2) = \frac{G_E(Q^2) + \frac{Q^2}{4m_{\psi}^2} G_M(Q^2)}{1 + \frac{Q^2}{4m_{\psi}^2}}, \\ G_E(Q^2) &= F_1(Q^2) - \frac{Q^2}{4m_{\psi}^2} F_2(Q^2), \quad F_2(Q^2) = \frac{G_M(Q^2) - G_E(Q^2)}{1 + \frac{Q^2}{4m_{\psi}^2}}. \end{split}$$

EPA spectra

$$\mathcal{J}_{\mu} = Ze \cdot \bar{\psi} \left[F_1(Q^2) \gamma_{\mu} - \frac{\sigma_{\mu\nu} q^{\nu}}{2m_{\psi}} F_2(Q^2) \right] \psi, \ \sigma_{\mu\nu} = \frac{\gamma_{\mu} \gamma_{\nu} - \gamma_{\nu} \gamma_{\mu}}{2},$$

$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2), \qquad F_1(Q^2) = \frac{G_E(Q^2) + \frac{Q^2}{4m_{\psi}^2} G_M(Q^2)}{1 + \frac{Q^2}{4m_{\psi}^2}},$$

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4m_{\psi}^2} F_2(Q^2), \quad F_2(Q^2) = \frac{G_M(Q^2) - G_E(Q^2)}{1 + \frac{Q^2}{4m_{\psi}^2}}.$$

$$n(\omega) = \frac{2Z^2\alpha}{\pi\omega} \int_0^\infty \frac{D(q_\perp^2 + (\omega/\gamma)^2)}{(q_\perp^2 + (\omega/\gamma)^2)^2} \, q_\perp^3 \, \mathrm{d}q_\perp, \quad D(Q^2) = \frac{G_E^2(Q^2) + \frac{Q^2}{4m_\psi^2} G_M^2(Q^2)}{1 + \frac{Q^2}{4m_\psi^2}}$$

EPA spectra

$$\mathcal{J}_{\mu} = Ze \cdot \bar{\psi} \left[F_1(Q^2) \gamma_{\mu} - \frac{\sigma_{\mu\nu} q^{\nu}}{2m_{\psi}} F_2(Q^2) \right] \psi, \ \sigma_{\mu\nu} = \frac{\gamma_{\mu} \gamma_{\nu} - \gamma_{\nu} \gamma_{\mu}}{2},$$

$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2), \qquad F_1(Q^2) = \frac{G_E(Q^2) + \frac{Q^2}{4m_{\psi}^2} G_M(Q^2)}{1 + \frac{Q^2}{4m_{\psi}^2}},$$

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4m_{\psi}^2} F_2(Q^2), \quad F_2(Q^2) = \frac{G_M(Q^2) - G_E(Q^2)}{1 + \frac{Q^2}{4m_{\psi}^2}}.$$

$$n(\omega) = \frac{2Z^2\alpha}{\pi\omega} \int_0^\infty \frac{D(q_\perp^2 + (\omega/\gamma)^2)}{(q_\perp^2 + (\omega/\gamma)^2)^2} \, q_\perp^3 \, \mathrm{d}q_\perp, \quad D(Q^2) = \frac{G_E^2(Q^2) + \frac{Q^2}{4m_\psi^2} G_M^2(Q^2)}{1 + \frac{Q^2}{4m_\psi^2}}$$

We need distribution in impact parameter space:

$$n(\omega) = \int n(b, \omega) d^2b = 2\pi \int_0^\infty n(b, \omega) b db, \quad n(b, \omega) = ?$$

Dipole approximation

$$G_E(Q^2) = rac{1}{\left(1 + rac{Q^2}{\Lambda^2}\right)^2},$$
 $G_M(Q^2) = rac{\mu_{\psi}}{\left(1 + rac{Q^2}{\Lambda^2}\right)^2},$

where μ_{ψ} is the fermion magnetic moment expressed in units of $e/2m_{\psi}$, and Λ is a parameter of the approximation related to the fermion charge radius R through

$$R^{2} = -6 \lim_{Q^{2} \to 0} \frac{\mathrm{d}G_{E}(Q^{2})}{\mathrm{d}Q^{2}} \quad \Rightarrow \quad \Lambda^{2} = \frac{12}{R^{2}}.$$

Using the modern value of 0.8414 fm for the proton charge radius we get that for proton $\Lambda^2 = 0.66 \text{ GeV}^2$.

$$F_2(Q^2) = 0 \ (F_1(Q^2) = G_E(Q^2) = G_M(Q^2))$$

$$n_2(\omega) = \frac{Z^2 \alpha}{\pi \omega} \left[(4a+1) \ln \left(1 + \frac{1}{a} \right) - \frac{24a^2 + 42a + 17}{6(a+1)^2} \right], \ a = \left(\frac{\omega}{\Lambda \gamma} \right)^2,$$

$$n_2(b,\omega) = \frac{Z^2 \alpha}{\pi^2 \omega} \left[\frac{\omega}{\gamma} K_1 \left(\frac{b\omega}{\gamma} \right) - \sqrt{\Lambda^2 + \left(\frac{\omega}{\gamma} \right)^2} K_1 \left(b\sqrt{\Lambda^2 + \left(\frac{\omega}{\gamma} \right)^2} \right) - \frac{b\Lambda^2}{2} K_0 \left(b\sqrt{\Lambda^2 + \left(\frac{\omega}{\gamma} \right)^2} \right) \right]^2.$$

If the Pauli form factor is neglected, i.e. $\mathcal{J}_{\mu} = ZeF_1(Q^2)\bar{\psi}\gamma_{\mu}\psi$, but the electric and magnetic form factors are not assumed to be equal $(G_E(Q^2) \neq G_M(Q^2))$, then

$$\begin{split} n_{\mathrm{2D}}(\omega) &= \frac{Z^2 \alpha}{\pi \omega} \left\{ \left(1 + 4u - 2(\mu_{\psi} - 1) \frac{u}{v} \right) \ln \left(1 + \frac{1}{u} \right) \right. \\ &+ \frac{\mu_{\psi} - 1}{(v - 1)^4} \left[\frac{\mu_{\psi} - 1}{v - 1} (1 + 4u + 3v) - 2 \left(1 + \frac{u}{v} \right) \right] \ln \frac{u + v}{u + 1} - \frac{24u^2 + 42u + 17}{6(u + 1)^2} \\ &+ (\mu_{\psi} - 1) \frac{6u^2(v^2 - 3v + 3) + 3u(3v^2 - 9v + 10) + 2v^2 - 7v + 11}{3(u + 1)^2(v - 1)^3} \\ &- (\mu_{\psi} - 1)^2 \frac{24u^2 + 6u(v + 7) - v^2 + 8v + 17}{6(u + 1)^2(v - 1)^4} \right\}, \quad u = \left(\frac{\omega}{\Lambda \gamma} \right)^2, \quad v = \left(\frac{2m_{\psi}}{\Lambda} \right)^2, \\ n_{\mathrm{2D}}(b, \omega) &= \frac{Z^2 \alpha}{\pi^2 \omega} \left[\frac{\omega}{\gamma} K_1 \left(\frac{b\omega}{\gamma} \right) - \left(1 + \frac{(\mu_{\psi} - 1) \frac{\Lambda^4}{16m_{\psi}^4}}{\left(1 - \frac{\Lambda^2}{4m_{\psi}^2} \right)^2} \right) \sqrt{\Lambda^2 + \frac{\omega^2}{\gamma^2}} K_1 \left(b\sqrt{\Lambda^2 + \frac{\omega^2}{\gamma^2}} \right) \right. \\ &+ \frac{(\mu_{\psi} - 1) \frac{\Lambda^4}{16m_{\psi}^4}}{\left(1 - \frac{\Lambda^2}{4m_{\psi}^2} \right)^2} \sqrt{4m_{\psi}^2 + \frac{\omega^2}{\gamma^2}} K_1 \left(b\sqrt{4m_{\psi}^2 + \frac{\omega^2}{\gamma^2}} \right) \\ &- \frac{1 - \frac{\mu_{\psi}\Lambda^2}{4m_{\psi}^2}}{1 - \frac{\Lambda^2}{4m^2}} \cdot \frac{b\Lambda^2}{2} K_0 \left(b\sqrt{\Lambda^2 + \frac{\omega^2}{\gamma^2}} \right) \right]^2. \end{split}$$

EPA spectrum with all form factors

$$\begin{split} n_p(\omega) &= \frac{Z^2 \alpha}{\pi \omega} \left\{ \left(1 + 4u - (\mu_\psi^2 - 1) \frac{u}{v} \right) \ln \left(1 + \frac{1}{u} \right) - \frac{24u^2 + 42u + 17}{6(u+1)^2} \right. \\ &\left. - \frac{\mu_\psi^2 - 1}{(v-1)^3} \left[\frac{1 + u/v}{v-1} \ln \frac{u+v}{u+1} - \frac{6u^2(v^2 - 3v + 3) + 3u(3v^2 - 9v + 10) + 2v^2 - 7v + 11}{6(u+1)^2} \right] \right\}, \\ &\left. u = \left(\frac{\omega}{\Lambda \gamma} \right)^2, \ v = \left(\frac{2m_\psi}{\Lambda} \right)^2. \end{split}$$

This is the correct spectrum for proton, however its spatial counterpart has not been derived yet.

Fiducial cross section

$$\begin{split} \frac{\mathrm{d}\sigma_{\mathrm{fid.}}(AB \to AB\chi^+\chi^-)}{\mathrm{d}\sqrt{s}} &= \int\limits_{\max(\hat{p}_T, \hat{p}_T)}^{\frac{\sqrt{s}}{2}} \mathrm{d}p_T \, \frac{\mathrm{d}\sigma(\gamma\gamma \to \chi^+\chi^-)}{\mathrm{d}p_T} \, \frac{\mathrm{d}L_{AB}^{\mathrm{fid.}}}{\mathrm{d}\sqrt{s}}, \\ \frac{\mathrm{d}L_{AB}^{\mathrm{fid.}}}{\mathrm{d}\sqrt{s}} &= \frac{\sqrt{s}}{2} \int\limits_{\max(-\hat{y}, \hat{y})}^{\min(\hat{y}, \hat{Y})} \mathrm{d}y \, n_A \left(\frac{\sqrt{s}}{2} \mathrm{e}^y\right) \, n_B \left(\frac{\sqrt{s}}{2} \mathrm{e}^{-y}\right), \\ \hat{y} &= \ln \left(\frac{2p_T}{\sqrt{s}} \cdot \frac{\sinh \hat{\eta} + \sqrt{\cosh^2 \hat{\eta} + \frac{m_\chi^2}{p_T^2}}}{1 \mp \sqrt{1 - \frac{p_T^2 + m_\chi^2}{s/4}}}\right). \end{split}$$

and \tilde{y} and \tilde{Y} are the constraints on rapidity coming from the constraints on photon energies, \hat{y} and \hat{y} are the constraints on rapidity coming from the constraints on photon energies,

$$\tilde{y} = \max\left(\ln\frac{\hat{\omega}_{1,\min}}{\sqrt{s}/2}, \ln\frac{\sqrt{s}/2}{\hat{\omega}_{2,\max}}\right),$$

 $\tilde{Y} = \min \left(\ln \frac{\hat{\omega}_{1,\text{max}}}{\sqrt{s}/2}, \ln \frac{\sqrt{s}/2}{\hat{\omega}_{2,\text{min}}} \right),$

and \tilde{p}_T is an extra constraint on p_T that ensures that integrations are performed over physically meaningful domains: $\hat{y} > 0, -\hat{y} < \tilde{Y}, \ \hat{y} > \tilde{y}.$

Survival factor

$$\sigma(AB \to ABX) = \int_{0}^{\infty} d\omega_1 \int_{0}^{\infty} d\omega_2 \int d^2b_1 \int d^2b_2 \, \sigma(\gamma\gamma \to X) \, n_A(b_1, \omega_1) \, n_B(b_2, \omega_2) \, P_{AB}(b),$$

Survival factor

$$\sigma(AB \to ABX) = \int_{0}^{\infty} d\omega_{1} \int_{0}^{\infty} d\omega_{2} \int d^{2}b_{1} \int d^{2}b_{2} \, \sigma(\gamma\gamma \to X) \, n_{A}(b_{1}, \omega_{1}) \, n_{B}(b_{2}, \omega_{2}) \, P_{AB}(b),$$

$$\frac{d\sigma(AB \to ABX)}{d\sqrt{s}} = \sigma_{\parallel}(\gamma\gamma \to X) \frac{dL_{AB}^{\parallel}}{d\sqrt{s}} + \sigma_{\perp}(\gamma\gamma \to X) \frac{dL_{AB}^{\perp}}{d\sqrt{s}},$$

where

$$\frac{\mathrm{d}L_{AB}^{\parallel}}{\mathrm{d}\sqrt{s}} = \frac{\sqrt{s}}{2} \int \mathrm{d}^{2}b_{1} \int \mathrm{d}^{2}b_{2} \int_{-\infty}^{\infty} \mathrm{d}y \, n_{A} \left(b_{1}, \frac{\sqrt{s}}{2} \mathrm{e}^{y}\right) \, n_{B} \left(b_{2}, \frac{\sqrt{s}}{2} \mathrm{e}^{-y}\right) \, P_{AB}(b) \cos^{2}\varphi,$$

$$\frac{\mathrm{d}L_{AB}^{\perp}}{\mathrm{d}\sqrt{s}} = \frac{\sqrt{s}}{2} \int \mathrm{d}^{2}b_{1} \int \mathrm{d}^{2}b_{2} \int_{-\infty}^{\infty} \mathrm{d}y \, n_{A} \left(b_{1}, \frac{\sqrt{s}}{2} \mathrm{e}^{y}\right) \, n_{B} \left(b_{2}, \frac{\sqrt{s}}{2} \mathrm{e}^{-y}\right) \, P_{AB}(b) \sin^{2}\varphi.$$

Survival factor: pp case

$$P_{pp}(b) = \left(1 - e^{-\frac{b^2}{2B}}\right)^2,$$

where B is an empirical parameter depending on the collision energy E.

$$\frac{\mathrm{d}L_{pp}^{\parallel}}{\mathrm{d}\sqrt{s}} = \pi^{2}\sqrt{s} \int_{0}^{\infty} b_{1} \, \mathrm{d}b_{1} \int_{0}^{\infty} b_{2} \, \mathrm{d}b_{2} \int_{-\infty}^{\infty} \mathrm{d}y \, n_{p} \left(b_{1}, \frac{\sqrt{s}}{2} \, \mathrm{e}^{y}\right) \, n_{p} \left(b_{2}, \frac{\sqrt{s}}{2} \, \mathrm{e}^{-y}\right) \\
\times \left\{1 - 2\mathrm{e}^{-\frac{b_{1}^{2} + b_{2}^{2}}{2B}} \left[I_{0} \left(\frac{b_{1}b_{2}}{B}\right) + I_{2} \left(\frac{b_{1}b_{2}}{B}\right)\right] + \mathrm{e}^{-\frac{b_{1}^{2} + b_{2}^{2}}{B}} \left[I_{0} \left(\frac{2b_{1}b_{2}}{B}\right) + I_{2} \left(\frac{2b_{1}b_{2}}{B}\right)\right]\right\}, \\
\frac{\mathrm{d}L_{pp}^{\perp}}{\mathrm{d}\sqrt{s}} = \pi^{2}\sqrt{s} \int_{0}^{\infty} b_{1} \, \mathrm{d}b_{1} \int_{0}^{\infty} b_{2} \, \mathrm{d}b_{2} \int_{-\infty}^{\infty} \mathrm{d}y \, n_{p} \left(b_{1}, \frac{\sqrt{s}}{2} \, \mathrm{e}^{y}\right) \, n_{p} \left(b_{2}, \frac{\sqrt{s}}{2} \, \mathrm{e}^{-y}\right) \\
\times \left\{1 - 2\mathrm{e}^{-\frac{b_{1}^{2} + b_{2}^{2}}{2B}} \left[I_{0} \left(\frac{b_{1}b_{2}}{B}\right) - I_{2} \left(\frac{b_{1}b_{2}}{B}\right)\right] + \mathrm{e}^{-\frac{b_{1}^{2} + b_{2}^{2}}{B}} \left[I_{0} \left(\frac{2b_{1}b_{2}}{B}\right) - I_{2} \left(\frac{2b_{1}b_{2}}{B}\right)\right]\right\}.$$

libepa

- $\bullet \ \ Developer's \ repository \ link: \ https://github.com/jini-zh/libepa.$
- Licensing provisions: GNU General Public License 3 (GPL3).
- Programming Language: C++, Python.
- Solution method: Cross sections are expressed in terms of multiple integrals over the phase space parameters and numerically calculated through recurrent application of algorithms for one-dimensional integration. Functional programming approach is used to simplify the interface and optimize the calculations.
- Physics description: arXiv:2311.01353
- $\begin{array}{c} \bullet \ \, \textit{Programmer reference:} \ \, \text{included in the repository, see also} \\ \underline{\text{https://jini-zh.org/libepa/libepa.html}} \end{array}$

Simple cases

The differential cross section for the production of a pair of muons with the invariant mass 100 GeV in collisions of protons with the energy 13 TeV (C++):

```
#include <epa/proton.hpp>
int main(void)
{
    const double muon_mass = 105.6583745e-3; // GeV
    const double collision_energy = 13e3; // GeV
    const double invariant_mass = 100; // GeV

    auto luminosity = epa::pp_luminosity(collision_energy);
    auto hotons_to_muons = epa::pbtons_to_fermions(muon_mass);
    auto cross_section = epa::xsection(photons_to_muons, luminosity);

    double result = cross_section(invariant_mass); // barn/GeV
    printf("%e\n", result);
    return 0;
```

Cross section for the production of a pair of fermions in pp collisions with the energy E=13 TeV for the fermion mass range from 90 to 250 GeV (Python interface):

Muon pair production at the LHC

ATLAS, PLB 777, 303 (2018)

The measured value is the fiducial cross section for the $pp \to pp\mu^+\mu^-$ reaction with the following constraints:

- for 12 GeV $<\sqrt{s}<30$ GeV, $p_T>6$ GeV,
- for 30 GeV $<\sqrt{s}<$ 70 GeV, $p_T>$ 10 GeV,
- $|\eta| < 2.4$,

Experimental value:

$$\sigma_{\text{exp}} = 3.12 \pm 0.07 \text{ (stat.)} \pm 0.10 \text{ (syst.) pb.}$$

Available luminosities

Notation	$ $ $ ilde{L}$	$L_{ m 2D}$	$ ilde{L}_{ m 2D}$	L_2	$ ilde{L}_2$
Non-electromagnetic interactions	no	yes	no	yes	no
Pauli form factor	yes	no	no	no	no
Electric and magnetic form factors	distinct	distinct	distinct	equal	equal
Survival factor	$S_{\rm 2D} = \frac{\mathrm{d}L_{\rm 2D}/\mathrm{d}\sqrt{s}}{\mathrm{d}\tilde{L}_{\rm 2D}/\mathrm{d}\sqrt{s}}$			$S_2 = \frac{\mathrm{d}}{\mathrm{d}}$	$\frac{L_2/\mathrm{d}\sqrt{s}}{\tilde{L}_2/\mathrm{d}\sqrt{s}}$

Available luminosities

Notation	$ ilde{L}$	$L_{ m 2D}$	$ ilde{L}_{ m 2D}$	L_2	$ ilde{L}_2$
Non-electromagnetic interactions	no	yes	no	yes	no
Pauli form factor	yes	no	no	no	no
Electric and magnetic form factors	distinct	distinct	distinct	equal	equal
Survival factor	$S_{\rm 2D} = \frac{\mathrm{d}L_{\rm 2D}/\mathrm{d}\sqrt{s}}{\mathrm{d}\tilde{L}_{\rm 2D}/\mathrm{d}\sqrt{s}}$			$S_2 = \frac{\mathrm{d}}{\mathrm{d}}$	$\frac{L_2/\mathrm{d}\sqrt{s}}{\tilde{L}_2/\mathrm{d}\sqrt{s}}$

Since the spatial equivalent photon spectrum for proton $n_p(b,\omega)$ is unavailable, we calculate three cross sections $\tilde{\sigma}$, $\tilde{\sigma}_{\rm 2D}$, $\sigma_{\rm 2D}$ corresponding to the luminosities \tilde{L} , $\tilde{L}_{\rm 2D}$, $L_{\rm 2D}$ and then obtain an estimation for the cross section taking into account non-electromagnetic interactions and the Pauli form factor as $\sigma = \tilde{\sigma} \cdot (\sigma_{\rm 2D}/\tilde{\sigma}_{\rm 2D})$.

Experimental value:

$$\sigma_{\rm exp} = 3.12 \pm 0.07 \ ({\rm stat.}) \pm 0.10 \ ({\rm syst.}) \ {\rm pb}.$$

Experimental value:

$$\sigma_{\rm exp} = 3.12 \pm 0.07 \ ({\rm stat.}) \pm 0.10 \ ({\rm syst.})$$
 pb.

libepa:

$$\begin{split} \tilde{\sigma}_{\text{2D}} &= 3.46 \text{ pb,} \\ \sigma_{\text{2D}} &= 3.31 \text{ pb,} \quad \Rightarrow \quad \sigma = \tilde{\sigma} \cdot \frac{\sigma_{\text{2D}}}{\tilde{\sigma}_{\text{2D}}} = 3.44 \text{ pb.} \\ \tilde{\sigma} &= 3.57 \text{ pb} \end{split}$$

Experimental value:

$$\sigma_{\rm exp} = 3.12 \pm 0.07 \text{ (stat.)} \pm 0.10 \text{ (syst.) pb.}$$

libepa:

$$\begin{split} \tilde{\sigma}_{\text{2D}} &= 3.46 \text{ pb,} \\ \sigma_{\text{2D}} &= 3.31 \text{ pb,} \quad \Rightarrow \quad \sigma = \tilde{\sigma} \cdot \frac{\sigma_{\text{2D}}}{\tilde{\sigma}_{\text{2D}}} = 3.44 \text{ pb.} \\ \tilde{\sigma} &= 3.57 \text{ pb} \end{split}$$

SuperChic2:

$$\sigma = 3.45 \pm 0.05$$
 pb.

SuperChic2 uses the dipole form factor approximation with $\Lambda^2=0.71~{\rm GeV}^2.$ libepa cross section σ with this Λ is 3.50 pb.

Experimental value:

$$\sigma_{\rm exp} = 3.12 \pm 0.07 ~\rm (stat.) \pm 0.10 ~\rm (syst.) ~\rm pb.$$

libepa:

$$\begin{split} \tilde{\sigma}_{\text{2D}} &= 3.46 \text{ pb,} \\ \sigma_{\text{2D}} &= 3.31 \text{ pb,} \quad \Rightarrow \quad \sigma = \tilde{\sigma} \cdot \frac{\sigma_{\text{2D}}}{\tilde{\sigma}_{\text{2D}}} = 3.44 \text{ pb.} \\ \tilde{\sigma} &= 3.57 \text{ pb} \end{split}$$

SuperChic2:

$$\sigma = 3.45 \pm 0.05$$
 pb.

SuperChic2 uses the dipole form factor approximation with $\Lambda^2=0.71~{\rm GeV}^2.$ libepa cross section σ with this Λ is 3.50 pb.

HERWIG:

$$\tilde{\sigma} = 3.56 \pm 0.05 \text{ pb},$$

 $\sigma = 3.06 \pm 0.05 \text{ pb}$ with the help of corrections from PLB 741, 66 (2015).

libepa vs experimental data

Byproduct: convenient GSL wrappings

}:

$$I(a) \equiv \frac{15}{a} \int_{0}^{a} \mathrm{d}x \, x \int_{0}^{\sqrt{1-\left(\frac{x}{a}\right)^2}} \mathrm{d}y \, y \int_{0}^{\sqrt{1-\left(\frac{x}{a}\right)^2}-y^2} \mathrm{d}z \, \frac{z}{\sqrt{x^2+y^2+z^2}} = \frac{a(a+\frac{1}{2})}{(a+1)^2}.$$
#include

int main(void) {

// build the computation function
auto I = [

// precompute integrators
integrate_x = epa::default_integrator(0),
integrate_y = epa::default_integrator(1),
integrate_z = epa::default_integrator(2)
](double a) -> double {

return x * integrate_y([&](double x) -> double {

return y * integrate_z([&](double z) -> double {

return z / sqrt(x*x + y*y + z*z);},
0, sqrt(1 - pow(x / a, 2) - y * y));},
0, sqrt(1 - pow(x / a, 2));},
0, a);
};

for (double a = 1; a <= 100; a += 1)
printf("%3.0f\t%.5f\t%.5f\t%.5f\n", a, I(a), a * (a + 0.5) / pow(a + 1, 2));
return 0;
};

Here I is a closure computing I(a). It captures variables integrate_x, integrate_y and integrate_z which are integrators used to calculate the integrals with respect to x, y and z.

Conclusions

- UPC are a great source of events for studying physics in $\gamma\gamma$ fusion, and libepa provides tools for it.
- libepa takes into account survival factor and allows to impose experimental cuts. These features are necessary for comparison with experimental data.
- Results are consistent with existing Monte Carlo codes.

libepa is quite different from other programs used to calculate UPC cross sections:

- libepa is a library rather than a standalone program.
- libepa relies on deterministic one-dimensional integration rather than the Monte Carlo approach.
- libepa is designed in the functional programming paradigm.

Conclusions

- libepa is a library rather than a standalone program.
 - It provides a set of tools for the user to create their own computation rather than a set of pre-programmed computations with variable numerical parameters. At the same time common computations are kept simple, and cross sections for proton-proton collisions can be obtained by a single call to libepa.
- libepa relies on deterministic one-dimensional integration rather than the Monte Carlo approach.

The fact that libepa uses deterministic integration rather than Monte Carlo may be an advantage or a disadvantage depending on the problem at hand and the approach to solve it. An explicit representation of the computation function in terms of mathematical expressions possibly involving recurring one-dimensional integrals over well-defined domains is required.

- libepa is designed in the functional programming paradigm.
 - The functional programming approach allowed for the interface when the user can replace part of a common computation with their own function, e.g., by changing the spectrum of a colliding particle, tweak the integration algorithm, or build a computation for a function not explicitly supported by the library.

When combined with CFFI bindings to a language that features a read-evaluate-print loop (REPL), it gives the user a powerful calculator that can quickly evaluate various values of interest to the research at hand.

Backup slides

Forward detectors

[1909.10827]

Distance from the IP, m	200	420
ξ range	0.015 – 0.15	0.002 – 0.02
$6.5~{ m TeV}~p~{ m energy}~{ m loss},~{ m GeV}$	97.5 – 975	13 - 130
in the center-of-mass frame, MeV	14 – 141	1.9 - 19
0.5 PeV ²⁰⁸ Pb energy loss, TeV	7.8 - 78	1.0 - 10
in the center-of-mass frame, GeV	2.9 – 29	0.37 – 3.7