Estimation of phase space density in dwarf galaxies

Ekaterina Koreshkova, Dmitry Gorbunov, Fedor Bezrukov

QUARKS-2024

May 24

Motivation

- So far only astronomical observations support the DM hypothesis and augment the data pointing at the lack of gravitational potentials at various spatial scales and late cosmological epochs.
- Dwarf spheroidal galaxies are excellent systems to probe the nature of fermionic dark matter due to their high observed dark matter phase-space density.
- Any stable (at cosmological time scale), electrically neutral, almost collisionless particles, produced in the early Universe and decoupled from primordial plasma well before recombination, may serve as dark matter particle.
- Sterile neutrinos being Majorana fermions, carring o charges (hence sterile) with respect to the SM gauge group and mixing with the SM neutrinos providing them with masses and mixing angles required to explain the neutrino oscillation phenomena.

Bounds from Liouville's theorem

<u>Liouville's theorem</u>: For a collisionless and dissipationsless particle species the maximum of fine-grained distribution function cannot increase throughout the cosmological evolution.

 $F_{initial}^{max} \ge F_{final}^{max}$

We assume that the initial sterile neutrino distribution is approximately thermal:

$$\begin{aligned} F_{initial} &= F_{FD}(x,p) = \frac{gN}{(2\pi)^3} \frac{1}{e^{p/T_{dec}} + 1} \Rightarrow F_{initial}^{max} = \frac{gN}{2(2\pi)^3} \\ n &= \frac{3}{4} N \frac{g\zeta(3)}{\pi^2} T_{\nu}^3 \Rightarrow \rho_{DM} = mn = \frac{3}{4} N \frac{g\zeta(3)}{\pi^2} T_{\nu}^3 \\ & \Downarrow \\ F_{initial}^{max} = \frac{1}{2(2\pi)^3} \frac{11.16eV}{m} \end{aligned}$$

Bounds from Liouville's theorem

Assuming Maxwellian velocity distribution in the final state:

$$F_{final} = F_{Maxwell}(x,p) = \frac{\rho(r)}{(2\pi)^{3/2}m^4 \sigma_r \sigma_\tau^2} \exp\left(-\frac{1}{2} \left(\frac{v_r^2}{\sigma_r^2} + \frac{v_{\varphi}^2}{\sigma_\tau^2} + \frac{v_{\theta}^2}{\sigma_\tau^2}\right)\right) \Rightarrow F_{final}^{max} = \frac{1}{(2\pi)^{3/2}m^4} \left(\frac{\rho(r)}{\sigma_r \sigma_\tau^2}\right)_{max}$$

$$m^3 \ge \frac{2(2\pi)^{\frac{3}{2}}}{11.16 \ eV} \left(\frac{\rho(r)}{\sigma_r \sigma_\tau^2}\right)_{max}$$

Problems:

- Maxwell phase-space density function has no local maximum, monotonously decreasing with radius instead
- Search for more strict limitations

Advantages:

• Explicit equation for mass bound

Bounds from EMF function

Excess Mass Function(EMF):

$$D(f) = \int (F(x,p) - f)\Theta(F(x,p) - f)dxdp$$

 $D_{initial}(f) \ge D_{final}(f) \quad \forall f$ $V_{initial} \int (F_{Fermi}(p,m) - f) \Theta(F_{Fermi}(p,m) - f) dp \ge \int (F_{Maxwell}(x,p,m) - f) \Theta(F_{Maxwell}(x,p,m) - f) dx dp$

Problems:

- Maxwell phase-space density function has no local maximum, monotonously decreasing with radius instead
- Implicit equation for mass bound

Advantages:

• More strict limitations

Numerical analysis

Radial Jeans equation:

$$\frac{\partial}{\partial r}(\rho\sigma_r^2) + \frac{2\beta}{r}\sigma_r^2 = -G\frac{M(< r)}{r^2}$$
$$\beta = 1 - \frac{\sigma_\tau^2}{\sigma_r^2}$$

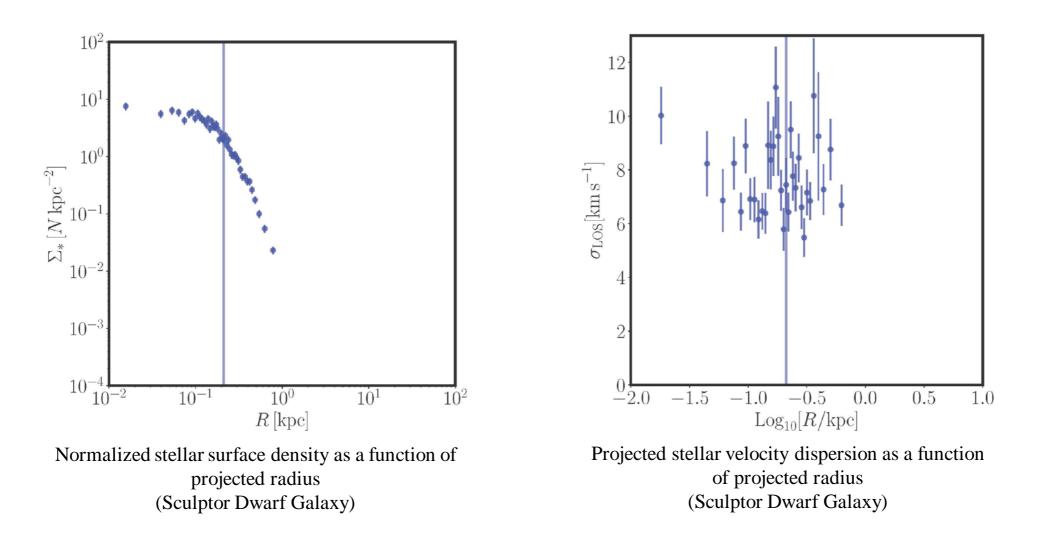
Equation above can be solved using GravSphere code:

• Fitting stellar $\rho \& \sigma_{LOS}^2 \to \text{Obtain } M(< r) \to \text{Obtain } \rho(r)$

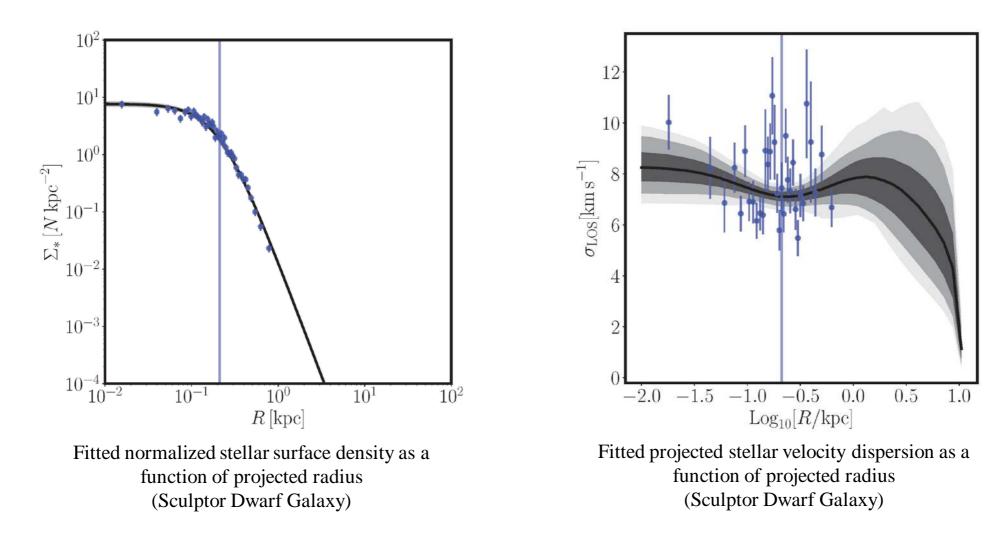
We adjust Gravsphere code for DM velocity dispersion calculation:

• Solving for DM $\rho \& \beta_{DM} \to \text{Obtain } \sigma_{DM}^2$

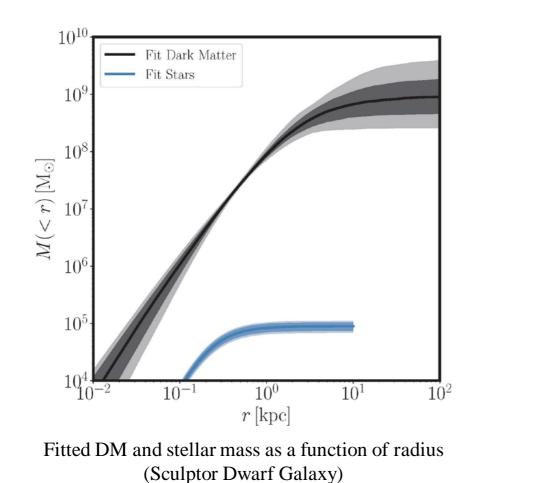
Observed parameters

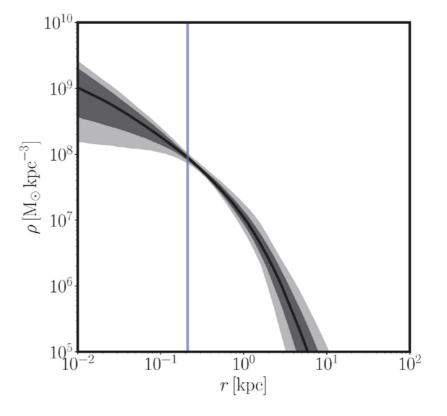


Fitting surface density & velocity dispersion



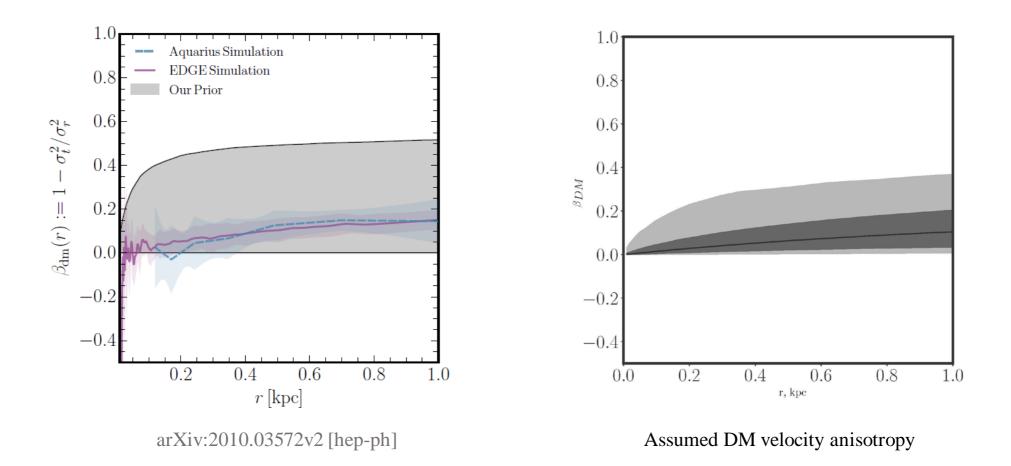
Fitting DM mass & density



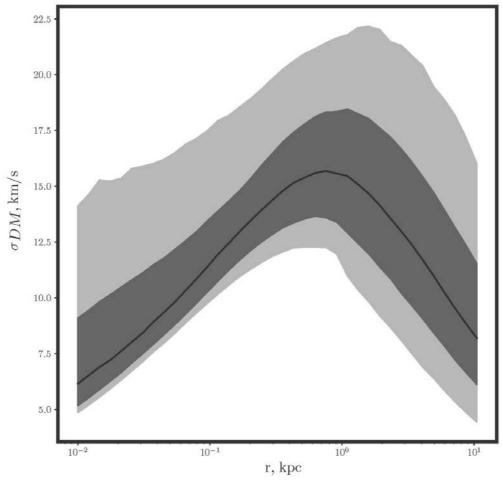


Fitted DM density as a function of radius (Sculptor Dwarf Galaxy)

DM velocity anisotropy



Calculating DM velocity dispersion



DM velocity dispersion as a function of radius (Sculptor Dwarf Galaxy)

Results

Galaxy name	Liouville's theorem keV	EMF keV
Fornax Dwarf Spheroidal	$0.80^{+0.28}_{-0.24}$	$0.84^{+0.34}_{-0.26}$
Sculptor Dwarf Galaxy	$1.78\substack{+0.40\\-0.50}$	$1.91\substack{+0.54 \\ -0.60}$
Leo I	$1.11\substack{+0.16\\-0.27}$	$1.31_{-0.36}^{+0.37}$
Carina dSph	$1.23^{+0.60}_{-0.54}$	$1.25^{+0.65}_{-0.56}$

Lower bounds on m_{DM}

Thank you for your attention!