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Motivation & outline

Motivation:
We expect that the next generation of gravitational wave detectors will be
able to measure the relic gravitational background
The type of spectrum depends on the initial conditions and how the
structures are formed
We can compare the spectrum results for different inflation models

Outline:
We start with inflation and count the spectrum of scalar perturbations
After inflation, perturbations evolve in a linear regime for some time
After that, the linear approximation becomes inapplicable and the
perturbations gather into structures that collapse
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Inflation

We have chosen the potential of Starobinsky
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Background field dynamics is described by the equation:

φ̈+ 3Hφ̇+ ∂φV = 0 (2)

The evolution of the scale factor is described by:
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Inflation

We use slow roll approximation at the beginning of inflation to set initial
conditions. In this case background equation is:

φ̇ = − 1
3H

∂φV (φ) (4)

And the Friedman equation:
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Initial condition for φ can be found from from the number of e-folds:

Ne(φ) =
8π
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V
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So, this three equations give us initial conditions for φ, φ̇ and ȧ
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Perturbations

We divide field into two parts: background and perturbations:

φ(󰂓x , t) = φ0(t) + ϕ(󰂓x , t) (7)

We take the metric in the form

ds2 = (1 + 2Φ)dt2 − a2(1 − 2Φ)d󰂓x2 (8)

Equation for perturbations evolution is:

ϕ̈+ 3Hϕ̇+ ∂2
φVϕ+ 2Φ∂φV − 4φ̇Φ̇+

k2

a2 ϕ = 0 (9)

The scalar potential equation follows from the 0i linearized Einstein equation:

Φ̇+ HΦ = 4πG φ̇ϕ (10)

The initial conditions are such that deep beyond the horizon the
perturbations coincide with a free scalar field:

ϕ =
e−ikτ

a
√

2k
, Φ = 0 (11)
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Scalar perturbations spectrum

Scalar perturbations spectrum is defined as:

PR =
k3H2

2π2φ̇2
|Qk |2 (12)

Where Qk is the Mukhanov-Sasaki variable, defined as

Qk = ϕk +
φ̇

H
Φ (13)

We can combine the equations for perturbations and scalar potential by
writing an equation for the Mukhanov-Sasaki variable:

Q̈k + 3HQ̇k +

󰀕
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󰀖
Qk = 0 (14)

We solve both sets of equations to control the difference in solutions
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After inflation

After inflation φ ≪ Mpl and the potential can be considered to be quadratic.

S =

󰁝 √
−g

󰀕
1
2
gµν∂µφ∂νφ− 1

2
m2φ2

󰀖
d4x (15)

The field can be split into two parts: the background ϕ0(t), which is
considered homogeneous and dependent only on time, and the perturbations
ϕ(t, 󰂓x), i.e.:

φ = ϕ0(t) + ϕ(t, 󰂓x) (16)

The equation for ϕ is as follows:

ϕ̈+ ϕ̈0 − 4Φ̇ϕ̇0 + 3H(ϕ̇+ ϕ̇0) + 2Φm2ϕ0 −
∆ϕ

a2 +m2(ϕ+ ϕ0) = 0 (17)
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Non-relativistic approximation

The new variable ψ is defined as follows:

ϕ(0) =
e−imtψ(0)√

2a
3
2 (t)

+ h.c , (18)

We use a non-relativistic approximation in the form mψ ≫ ψ̇:

e imt

√
2a3/2

󰀕
2m2Φψ0 − 2imψ̇ − ∆ψ

a2

󰀖
+ h.c + O(mt) = 0 (19)

The equation for scalar potential follows from Einstein’s equations using the
same approximations:

∆Φ = 4πGm2 |ψ|2 − |ψ0|2
a(t)

(20)

To obtain linearized equations, we divide the ψ into the background part and
perturbations and leave only linear contributions

10 / 26



The difference in contrasts δ is defined as:

δ ≡ δT 0
0

T 0
0

(21)

We solved the linear equations for ψ and ϕ for a set of initial times and
calculated the corresponding contrasts, which we denoted as δ(ψ) and δ(ϕ)

󰀏󰀏󰀏󰀏
δ(ψ)− δ(ϕ)

δ(ψ)

󰀏󰀏󰀏󰀏 for the set of initial times
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Numerical methods

We move on to dimensionless quantities and solve the equations using these
quantities. There are two free parameters in the problem: the mass of the
field (m) and the average value of the field ψ0

To solve the Schrodinger equation, we use the symplectic method of the 4th
order:

f(t) = e−itHf0 (22)
eτH = eanτV · ebnτT + o(τ4), (23)

To solve the Poisson equation, we will use the Fourier series expansion
method:

Φ̃(󰂓k) = −4πG
󰂄(󰂓k)

k2 (24)
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To check the correctness of the modelling, we compare solutions of linear and
non-linear equations for the small perturbations

Solutions of linear and non-linear equation
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Evolution of the field. Color is |ψ|2
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Evolution of the field. Color is |ψ|2
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Evolution of the field. Color is |ψ|2
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Evolution of the field. Color is |ψ|2
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Evolution of the field. Color is |ψ|2
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Evolution of the field. Color is |ψ|2
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Evolution of the field. Color is |ψ|2
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Evolution of the field. Color is |ψ|2
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Gravitational waves

The equations for the tensor modes have the form:

ḧij(󰂓x , t) + 3Hḣij(󰂓x , t)−
∇2

a2 hij(󰂓x , t) = 16πGΠTT
ij (25)

The solution of such an equation for the quantity h, defined as
hij(󰂓k , η) = ahij(󰂓k , η) for the modes inside the horizon, assuming that no
gravitational waves have been emitted up to the moment η = ηi and after
some moment η = ηf , is given by the Green’s function:

hij(η, 󰂓k) = −16πG
a(η)k

󰁝 ηf

ηi

dη′ek(η−η′)a(η′)ΠTT
ij (η′, 󰂓k) (26)

We define gravitational waves energy density over a volume V as:

ρgw =
1

32πG
〈ḣij(x , t)ḣij(x , t)〉V (27)
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Gravitational waves spectrum is defined as:
󰀕
dρgw
d ln k

󰀖
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=
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a4(η)
(28)

The expression for the spectrum of the gravitational waves:
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󰁝
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′, 󰂓k)

󰀏󰀏󰀏󰀏
2

(29)

where Πp is projection of transverse and traceless part of the
energy-momentum tensor onto gw’s polarization vectors.
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Conclusions

We can simulate the nonlinear evolution of the field and the formation of
structures
We can set initial conditions which follows from exact inflationary model
It is planned to obtain a spectrum of gravitational waves that are emitted due
to the nonlinear evolution of the field
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