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Motivation & outline

Motivation:

@ We expect that the next generation of gravitational wave detectors will be
able to measure the relic gravitational background

@ The type of spectrum depends on the initial conditions and how the
structures are formed

@ We can compare the spectrum results for different inflation models
Outline:

@ We start with inflation and count the spectrum of scalar perturbations

@ After inflation, perturbations evolve in a linear regime for some time

@ After that, the linear approximation becomes inapplicable and the
perturbations gather into structures that collapse
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Inflation

@ We have chosen the potential of Starobinsky

,ﬁ 0
Vo) = Jmem3 (1o V4N ) )
@ Background field dynamics is described by the equation:

b +3Hp+ 8,V =0 (2)

@ The evolution of the scale factor is described by:
2
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Inflation

@ We use slow roll approximation at the beginning of inflation to set initial
conditions. In this case background equation is:

b= 505V(9) *)

@ And the Friedman equation:

1 /8rV\Y?
H=— (2%
Mpl( 3 ) (5)

@ Initial condition for ¢ can be found from from the number of e-folds:

8r [PV
) = [ 90 ()

@ So, this three equations give us initial conditions for ¢, ¢ and 4



Perturbations

e We divide field into two parts: background and perturbations:

P(X,t) = ¢o(t) + ¢(X, t) (7)

@ We take the metric in the form

ds? = (1 +20)dt? — a*(1 — 20)d x> (8)
@ Equation for perturbations evolution is:
- ] R
¢+3H¢+a§vgp+2¢a¢v—4¢¢+a—zgp:o (9)

@ The scalar potential equation follows from the 0i linearized Einstein equation:
4+ HO = 4Gy (10)

@ The initial conditions are such that deep beyond the horizon the
perturbations coincide with a free scalar field:




Scalar perturbations spectrum

@ Scalar perturbations spectrum is defined as:
k3 H?
2772(;'52

@ Where Qy is the Mukhanov-Sasaki variable, defined as

Pr = | Qk|? (12)

Qk = i + %¢ (13)

@ We can combine the equations for perturbations and scalar potential by
writing an equation for the Mukhanov-Sasaki variable:
36> ¢ 90V

. . k2
H - _
Qk + 3 Qk + ( + HMF%I

2
M2, 2H2MY, *

+ a;v) Q=0 (14)

@ We solve both sets of equations to control the difference in solutions
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Scalar perturbations spectrum
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After inflation

o After inflation ¢ < M, and the potential can be considered to be quadratic.
I I 502\ 4
S=[+—-g Eg” 0u 0y — 5m o | d*x (15)
@ The field can be split into two parts: the background g(t), which is
considered homogeneous and dependent only on time, and the perturbations

o(t,X), i.e.
¢ = po(t) + ¢(t,X) (16)

@ The equation for ¢ is as follows:

@+ Fo — 4PGo + 3H(¢ + o) + 2dmPpg — a—f + m*(p+ @) =0 (17)
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Non-relativistic approximation

@ The new variable ¢ is defined as follows:

_ e_imt’lﬂ(o)
O Vet (n

@ We use a non-relativistic approximation in the form my > 7,/}

<2m2¢1/)0 — 2im) — M) + h.c+ O(mt)=0 (19)

+he, (18)

eimt
\/533/2
@ The equation for scalar potential follows from Einstein's equations using the

same approximations:

Ab = 4rGm? 2L (t|)w0|2 (20)

@ To obtain linearized equations, we divide the v into the background part and
perturbations and leave only linear contributions
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@ The difference in contrasts ¢ is defined as:

_0T¢g

Y @)

@ We solved the linear equations for 1) and ¢ for a set of initial times and
calculated the corresponding contrasts, which we denoted as (1) and (i)
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Numerical methods

@ We move on to dimensionless quantities and solve the equations using these
quantities. There are two free parameters in the problem: the mass of the
field (m) and the average value of the field g

@ To solve the Schrodinger equation, we use the symplectic method of the 4th
order:

f(t) =e ™Mp (22)

e-rH —_ eanTV A ebnTT + O(TA), (23)

@ To solve the Poisson equation, we will use the Fourier series expansion
method:

&ﬂ:—wc%? (24)
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@ To check the correctness of the modelling, we compare solutions of linear and
non-linear equations for the small perturbations

evolution of k? = 30.842513753404244
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Solutions of linear and non-linear equation
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Relative difference between solutions on different grids
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Averaged value of the field perturbations with momentum k > 0.8kp,ax
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Evolution of the field. Color is |1)]?

Time: 113780.064539




Evolution of the field. Color is |1)]?

Time: 143780.064539




Evolution of the field. Color is |1)]?

Time: 207530.064539




Evolution of the field. Color is |1)]?

Time: 457530.064539




Evolution of the field. Color is |1)|?

Time: 31905.064539




Evolution of the field. Color is |1)|?

Time: 35685.064539




Evolution of the field. Color is |1)|?

Time: 49092564539




Evolution of the field. Color is |1)|?

Time: 52530.064539




Gravitational waves

@ The equations for the tensor modes have the form:

— . v
hij(%,t) + 3Hh;(X, t) — — hj(%,t) = 167G (25)
a
@ The solution of such an equation for the quantity h, defined as
hij(k,m) = ahjj(k,n) for the modes inside the horizon, assuming that no
gravitational waves have been emitted up to the moment n = 7; and after
some moment 7) = 7y, is given by the Green's function:

- 160G [ . >,
hij(n, k) = _W/ dn/ =) a( )N T (', k) (26)
n

We define gravitational waves energy density over a volume V as:

i

Pgw = ﬁ“”j(x, t)hU(X7 t)>V (27)

24 / 26



@ Gravitational waves spectrum is defined as:

dpgw > Si(nr)
= (28)
(dlnk pone 2(0)
@ The expression for the spectrum of the gravitational waves:
8m Gk* K 1 nik(ne=n") (0! 1 ?
Sn)=—,— [ 42 > g d'e a(n"Np(n', k) (29)

p=+, X

@ where [1, is projection of transverse and traceless part of the
energy-momentum tensor onto gw's polarization vectors.
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Conclusions

@ We can simulate the nonlinear evolution of the field and the formation of
structures

@ We can set initial conditions which follows from exact inflationary model

@ It is planned to obtain a spectrum of gravitational waves that are emitted due
to the nonlinear evolution of the field
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