Stable Nonsingular cosmologies in Galileons with curvature and torsion

S. Mironov (INR RAS) & M. Valencia-Villegas (ITMP MSU)

QUARKS XXII International Seminar on High-Energy Physics 22.05.2024

Outline

- 1.
- Galileons on a spacetime with both, curvature and torsion 2.
 - lacksquare

... The No-Go theorems are accidental to the assumptions (e.g. torsionless)

- 3 Perturbations
- Status of the No-Go Theorems: How to break them 4.
 - Example, a healthy bounce (at least at linear order) a.

Introduction: Galileons (Horndeski) on a curved spacetime (without Torsion)

why is this interesting? -> besides NEC violation, break the No-Go theorems

-> Can obtain "Healthy" modes (at linear order)

- D, vol. 109, p. 044073, Feb 2024.
- S. Mironov and M. V-V, "Quartic Horndeski-Cartan theories in a FLRW universe," Phys. Rev. D, vol. 108, no. 2, p. 024057, 2023.
- S. Mironov and M. V-V, "Healthy Horndeski gravities with torsion" 2405.08673

• S. Mironov and M. V-V, "Stability of nonsingular cosmologies in galileon models with torsion: A no-go theorem for eternal subluminality," Phys. Rev.

Introduction: Galileons on a spacetime without Torsion

1. Introduction: Galileons on a spacetime without Torsion

On top of GR, $\int d^4x \sqrt{-g} R$

with $X = -\frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$

of

 $G_2(\phi, X), G_3(\phi, X), G_4(\phi, X), G_5(\phi, X)$ With coefficients

consider four general functions $G_2(\phi, X)$, $G_3(\phi, X)$, $G_4(\phi, X)$, $G_5(\phi, X)$

Horndeski/ Generalized Galileons: Lorentz invariant combinations

1. Introduction: Galileons on a spacetime without Torsion

Horndeski/ Generalized Galileons:

$$S = \int d^4x \sqrt{-g} \left(G_2 - G_3 \nabla_\mu \nabla^\mu \phi + G_4(\phi, X) R + G_{4,X} \left((\nabla_\mu \nabla^\mu \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2 + G_5 G^{\mu\nu} \nabla_\mu \nabla_\nu \phi - \frac{G_{5X}}{6} \left((\nabla_\mu \nabla^\mu \phi)^3 - 3(\nabla_\mu \nabla^\mu \phi) (\nabla_\nu \nabla_\rho \phi) \nabla^\nu \nabla_\mu + 2 \left(\nabla_\mu \nabla_\nu \phi \right) (\nabla^\nu \nabla^\rho \phi) \nabla^\mu \nabla_\rho \phi \right) \right)$$

Notation: $G_{4,X} = \partial G_4 / \partial X$, (-,+,+,+

Horndeski/ Generalized Galileons:

- No Ostrogradsky-Ghost (Horndeski, 1974)
- Generality
- Inspired by the low energy effective theory of DGP model (A. Nicolis, R.

Rattazzi, and E. Trincherini, 2009).

COSMOID CONTROL SOLUTION (provided the general case, with no specific asymptotics)

There are **Global stability issues**

1. Introduction: Galileons on a curved spacetime without Torsion

• (No) NEC (See e.g. Rubakov, 2014) - (No P-H. Non-singular cosmologies)

• NO-GO (Libanov, Mironov and Rubakov, 2016): No nonsingular, non-ghosty, stable

2. Galileons on a spacetime with Curvature and Torsion

Why? -> to obtain "Healthy" modes (at linear order)

2. Galileons on a spacetime with Torsion

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g^{\rho\sigma} \left(\partial_{\mu} g_{\nu\sigma} + \partial_{\nu} g_{\mu\sigma} - \partial_{\sigma} g_{\mu\nu} \right) \qquad \qquad \nabla \to \tilde{\nabla} \,, \qquad \qquad \tilde{\Gamma}^{\nu}_{\mu\lambda} \neq \tilde{\Gamma}^{\nu}_{\lambda\mu}$$

Horndeski/ Generalized Galileons with Torsion: Lorentz invariant combinations of

 \tilde{R} $(\tilde{\nabla}_{\mu}\tilde{\nabla}_{\nu}\phi)$

With coefficients

 $G_2(\phi, X), \ G_3(\phi, X)$

$$(p)^p \quad p \le 3 \quad \left[\tilde{\nabla}_{\mu}, \tilde{\nabla}_{\nu}\right] \phi \neq 0$$

,
$$G_4(\phi, X)$$
, $G_5(\phi, X)$

2. Galileons on a spacetime with Torsion. - Example: Quartic Galileons with Torsion

$$G_{4,X} \ (\tilde{\nabla}_{\mu}\tilde{\nabla}_{\nu}\phi)^2$$
 ?

$$G_{4,X}\left(\left(\tilde{\nabla}_{\mu}\tilde{\nabla}^{\mu}\phi\right)^{2}+c\left(\tilde{\nabla}_{\mu}\tilde{\nabla}_{\nu}\phi\right)\tilde{\nabla}^{\mu}\tilde{\nabla}^{\nu}\phi+s\left(\tilde{\nabla}_{\mu}\tilde{\nabla}_{\nu}\phi\right)\tilde{\nabla}^{\nu}\tilde{\nabla}^{\mu}\phi\right),\qquad c+s=-1$$

c parameterises a family of theories with <u>different dynamics</u>.

• S. Mironov and M. Valencia-Villegas, Phys. Rev. D 108, 024057, 2023

$\mathcal{S}_4 = \int \mathrm{d}^4 x \sqrt{-g} \left(G_4(\phi, X) R + G_{4,X} \left(\left(\nabla_\mu \nabla^\mu \phi \right)^2 - \left(\nabla_\mu \nabla_\nu \phi \right)^2 \right) \right)$ $\nabla \to \tilde{\nabla}$,

2. Galileons on a spacetime with Torsion.

- The Lagrangian for this talk:

$$S = \int d^4 x \ (\mathcal{L}_2 + \mathcal{L}_3)$$
$$\mathcal{L}_2 = G_2 ,$$
$$\mathcal{L}_3 = -G_3 \,\tilde{\nabla}_\mu \tilde{\nabla}^\mu \phi ,$$
$$\mathcal{L}_4 = G_4 \,\tilde{R} + G_{4,X} \left(\left(\tilde{\nabla} \right. \mathcal{L}_5 = G_5 \,\tilde{G}^{\mu\nu} \,\tilde{\nabla}_\mu \tilde{\nabla}_\nu \phi \right) \right)$$
$$+ \left(\tilde{\nabla}_\nu \tilde{\nabla}_\rho \phi \right) \left(2 (\tilde{\nabla}^\mu \tilde{\nabla}^\nu \phi) \right)$$

 $+ \mathcal{L}_4 + \mathcal{L}_5$,

 $\tilde{7}_{\mu}\tilde{\nabla}^{\mu}\phi\right)^{2}-\left(\tilde{\nabla}_{\mu}\tilde{\nabla}_{\nu}\phi\right)\tilde{\nabla}^{\nu}\tilde{\nabla}^{\mu}\phi\right)$ $-\frac{1}{6}G_{5,X}\left((\tilde{\nabla}_{\mu}\tilde{\nabla}^{\mu}\phi)^{3}\right)$ $\tilde{\nabla}^{\rho}\tilde{\nabla}_{\mu}\phi - 3(\tilde{\nabla}_{\mu}\tilde{\nabla}^{\mu}\phi)\tilde{\nabla}^{\rho}\tilde{\nabla}^{\nu}\phi\bigg)\bigg)$

Why is this Action interesting?... besides NEC violation

1. <u>Break the No-Go: More Mixing with torsion</u> perturbations breaks the link between the scalar

and tensor sectors

2. Galileons on a spacetime with Torsion.

- Torsion in the metric (second order) formalism:

$$T^{\rho}{}_{\mu\nu} = \tilde{\Gamma}^{\rho}{}_{\mu\nu} - \tilde{\Gamma}^{\rho}{}_{\nu\mu}, \qquad K^{\rho}{}_{\mu\nu} = -\frac{1}{2} \left(T_{\nu}{}^{\rho}{}_{\mu} + T_{\mu}{}^{\rho}{}_{\nu} + T^{\rho}{}_{\mu\nu} \right) ,$$

- Assume: connection is <u>not</u> an independent field:

$$\tilde{\Gamma}^{\rho}_{\mu\nu} = \Gamma^{\rho}_{\mu\nu} - K^{\rho}_{\mu\nu}$$

$$\tilde{\nabla}_{\mu}V^{\nu} = \nabla_{\mu}V^{\nu} - K^{\nu}{}_{\mu\lambda}V^{\lambda}$$

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g^{\rho\sigma} \left(\partial_{\mu} g_{\nu\sigma} + \partial_{\nu} g_{\mu\sigma} - \partial_{\sigma} g_{\mu\nu} \right)$$

$$\nabla_{\rho} g_{\mu\nu} = 0$$

3. Torsionful Galileons about the FLRW background

3. Torsionful Galileons about the FLRW background Linearization: <u>Spatially flat FLRW background</u> (conformal time)

- $\eta_{\mu\nu} \mathrm{d}x^{\mu} \,\mathrm{d}x^{\nu} = a^2 (\eta_{\mu\nu})^2 \,\mathrm{d}x^{\mu\nu} = a^2 (\eta_{\mu\nu})^2 \,\mathrm{d}x^{\mu\nu} \,\mathrm{d}x^{\mu\nu} + a^2 \,\mathrm{d}x^{\mu\nu} \,\mathrm{d}x^{\mu\nu} = a^2 \,\mathrm{d}x^{\mu\nu} \,\mathrm{d}x^{\mu\nu} + a^2 \,\mathrm{d}x^{\mu\nu}$
- $\delta g_{\mu\nu} \,\mathrm{d}x^{\mu} \,\mathrm{d}x^{\nu} = a^2(\eta) \left(-2\,\alpha\,\mathrm{d}\eta^2\right)$
 - $+ 2 (\partial_i B + S_i) d\eta dx^i + (-2 \psi \delta_{ij})$
- Perturbation of contortion:

tensors

$$\eta) \left(-\mathrm{d}\eta^2 + \delta_{ij} \,\mathrm{d}x^i \,\mathrm{d}x^j \right)$$

 $+ 2 \partial_i \partial_j E + \partial_i F_j + \partial_j F_i + 2 h_{ij} dx^i dx^j$

24 independent components, 8 scalars, 6 vectors, 2 (2-component)

$$T^{(1)}_{ij} \ \partial_i T^{(2)}_{jk} - \partial_k T^{(2)}_{ji}$$

3. Torsionful Galileons about the FLRW background **Linearization:** Notation

The perturbed Horndeski scala

- The perturbed contortion tenso
- Background contortion: with $K_{\mu\nu\sigma} = -K_{\sigma\nu\mu}$ on an isotropic and
- homogeneous spacetime

$${}^{0}K_{0jk} = x(\eta)\delta_{jk}$$

nr:
$$\phi = \varphi(\eta) + \Pi$$

or:
$$K_{\mu\nu\sigma} = {}^{0}K_{\mu\nu\sigma} + \delta K_{\mu\nu\sigma}$$

$${}^{0}K_{ijk} = y(\eta)\epsilon_{ijk}$$

4. Stability:

- B. Breaking the No-Go with L5

A. No-Go theorem in up to quartic Theory (L4)

A. No-Go theorem in up to quartic Theory (L4)

$$\begin{split} \mathcal{S} &= \int \mathrm{d}^4 x \left(\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 \right) + \mathcal{L}_5 \right) , \\ \mathcal{L}_2 &= G_2 , \\ \mathcal{L}_3 &= -G_3 \,\tilde{\nabla}_\mu \tilde{\nabla}^\mu \phi , \\ \mathcal{L}_4 &= G_4 \,\tilde{R} + G_{4,X} \left(\left(\tilde{\nabla}_\mu \tilde{\nabla}^\mu \phi \right)^2 - \left(\tilde{\nabla}_\mu \tilde{\nabla}_\nu \phi \right) \tilde{\nabla}^\nu \tilde{\nabla}^\mu \phi \right) \\ \mathcal{L}_5 &= G_5 \,\tilde{G}^{\mu\nu} \,\tilde{\nabla}_\mu \tilde{\nabla}_\nu \phi - \frac{1}{6} \,G_{5,X} \left((\tilde{\nabla}_\mu \tilde{\nabla}^\mu \phi)^3 \right. \\ &+ \left(\tilde{\nabla}_\nu \tilde{\nabla}_\rho \phi \right) \left(2 (\tilde{\nabla}^\mu \tilde{\nabla}^\nu \phi) \tilde{\nabla}^\rho \tilde{\nabla}_\mu \phi - 3 (\tilde{\nabla}_\mu \tilde{\nabla}^\mu \phi) \tilde{\nabla}^\rho \tilde{\nabla}^\nu \phi \right) \right) \end{split}$$

4. Torsionful Galileons about the FLRW background

$$S_{\tau} = \int d\eta d^{3}p \left(b_{1} \left(\dot{h}_{ij} \right)^{2} + b_{2} \vec{p}^{2} (h_{ij})^{2} + b_{3} (h_{ij})^{2} \right. \\ \left. + \left(c_{1} \vec{p}^{2} (T_{ij}^{(2)})^{2} + c_{2} h_{ij} T_{ij}^{(1)} + c_{3} \dot{h}_{ij} T_{ij}^{(1)} + c_{4} (T_{ij}^{(1)})^{2} \right) \right)$$

$$c_1 \, T_{ij}^{(2)} \equiv 0$$

Quadratic Action for tensor sector: Torsionless (c=0) vs Torsionful

4. Torsionful Galileons about the FLRW background **Final Quadratic Action:**

$$c_g^2 = \mathcal{F}_\tau / \mathcal{G}_\tau$$

Key part,

extended to the full Horndeski action in (Kobayashi, 2016)...

Follow a similar reasoning as initially proved for a subclass of generalized Galileons in (Libanov, Mironov and Rubakov, 2016) and then

4. No-Go theorem:

- For L4 Galileons on a spacetime with torsion the following assumptions for a first order perturbative expansion about FLRW are mutually inconsistent: Nonsingular cosmology: namely, there is a lower bound on the scale
- factor $a(\eta) > b_1 > 0$.
- gradient instabilities: $\mathcal{G}_{\tau} > 0$, $\mathcal{F}_{\tau} > 0$, $\mathcal{F}_{\mathcal{S}} > 0$, $\mathcal{G}_{\mathcal{S}} > 0$.
- III) The graviton is always sub/ luminal: $|(c_q)^2 \leq 1|$ *IV)* ...

The graviton and the scalar mode are not ghosts and they suffer no

4. No-Go theorem:

IV) There is a lower bound $\mathcal{F}_{\tau}(\eta) > b_2 > 0$ as $\eta \to \pm \infty$ (no "Strong gravity" at linear order (Ageeva, Petrov and Rubakov, 2021)). (-) Vanishes at most a finite amount of times (To cover generic theories not defined by the equation $\Theta \equiv 0$ (Mironov and Shtennikova, 2023. Also, talk)

4. Stability: **The argument:** take $\mathcal{F}_{\mathcal{S}} = \frac{1}{a^2} \frac{dN}{dn} - \mathcal{F}_{\tau} > 0$ With Torsion, L4 $T = \mathcal{F}_{\tau} \left(c_g^2 - 2 \right) < 0$ Argument <u>With</u> Torsion: (I)-(III) imply

Because Θ is a regular function of H and ϕ

(without Torsion) $T = \mathcal{G}_{\tau} > 0$

 $\frac{N}{\eta} > b_1^2 b_2 > 0$

4. Stability of L4 (In torsionful L4 G. stability -sub/luminality)

4. Stability of L4 Why a No-Go? There is a tight relation between the

action for the graviton <-> action for the scalar

$$\mathcal{G}_{\mathcal{S}} = 3 \mathcal{G}_{\tau} + \frac{\mathcal{G}_{\tau}^2 \Sigma}{\Theta^2}, \quad \mathcal{F}_{\mathcal{S}} = \frac{1}{a^2} \frac{\mathrm{d}}{\mathrm{d}\eta} \left(\frac{a \mathcal{G}_{\tau} T}{\Theta} \right) - \mathcal{F}_{\tau}$$

$$T = \mathcal{F}_{\tau} \left(c_g^2 - 2 \right)$$

 $\mathcal{G}_{\tau} > 0, \mathcal{F}_{\tau} > 0, \mathcal{F}_{\mathcal{S}} > 0, \mathcal{G}_{\mathcal{S}} > 0.$

$$c_g^2 = \mathcal{F}_\tau / \mathcal{G}_\tau$$

4. Stability:

B. Breaking the No-Go with L5

Modified graviton

- The Lagrangian to break the No-Go:

$$\begin{split} \mathcal{S} &= \int \mathrm{d}^4 x \; (\mathcal{L}_2 \,+\, \mathcal{L}_3 \,+\, \mathcal{L}_4 \,+\, \mathcal{L}_5) \,, \\ \mathcal{L}_2 &= G_2 \,, \\ \mathcal{L}_3 &= -G_3 \,\tilde{\nabla}_\mu \tilde{\nabla}^\mu \phi \,, \\ \mathcal{L}_4 &= G_4 \,\tilde{R} + G_{4,X} \left(\left(\tilde{\nabla}_\mu \tilde{\nabla}^\mu \phi \right)^2 - \left(\tilde{\nabla}_\mu \tilde{\nabla}_\nu \phi \right) \tilde{\nabla}^\nu \tilde{\nabla}^\mu \phi \right) \\ \mathcal{L}_5 &= G_5 \,\tilde{G}^{\mu\nu} \,\tilde{\nabla}_\mu \tilde{\nabla}_\nu \phi - \frac{1}{6} \,G_{5,X} \left((\tilde{\nabla}_\mu \tilde{\nabla}^\mu \phi)^3 \right. \\ &+ \left(\tilde{\nabla}_\nu \tilde{\nabla}_\rho \phi \right) \left(2 (\tilde{\nabla}^\mu \tilde{\nabla}^\nu \phi) \tilde{\nabla}^\rho \tilde{\nabla}_\mu \phi - 3 (\tilde{\nabla}_\mu \tilde{\nabla}^\mu \phi) \tilde{\nabla}^\rho \tilde{\nabla}^\nu \phi \right) \end{split}$$

Quadratic action for the Tensor sector with L5:

more mixing of perturbations of torsion with perturbations of the metric

$$S_{\tau} = \int d\eta d^{3}p \left(b_{1} \left(\dot{h}_{ij} \right)^{2} + b_{2} \vec{p}^{2} (h_{ij})^{2} + b_{3} (h_{ij})^{2} \right. \\ \left. + \left(c_{1} \vec{p}^{2} (T_{ij}^{(2)})^{2} + c_{2} h_{ij} T_{ij}^{(1)} + c_{3} \dot{h}_{ij} T_{ij}^{(1)} + c_{4} (T_{ij}^{(1)})^{2} \right) \right. \\ \left. + \vec{p}^{2} \left(d_{1} T_{ij}^{(1)} + d_{2} \dot{h}_{ij} + d_{3} h_{ij} \right) T_{ij}^{(2)} + d_{4} \vec{p}^{2} h_{ij} T_{ij}^{(1)} \right)$$

Quadratic action for the Tensor sector with L5:

$$\begin{split} \mathcal{S}_{\tau} &= \int \mathrm{d}\eta \,\mathrm{d}^{3}p \, \left(b_{1} \, (\dot{h}_{ij})^{2} + b_{2} \, \vec{p}^{\,2} (h_{ij})^{2} + \vec{q} \right. \\ &+ \left(c_{1} \, \vec{p}^{\,2} (T_{ij}^{(2)})^{2} + c_{2} \, h_{ij} \, T_{ij}^{(1)} + c_{3} \, \dot{h}_{ij} \, T_{ij}^{(1)} + c_{4} \\ &+ \vec{p}^{\,2} \Big(d_{1} \, T_{ij}^{(1)} + d_{2} \, \dot{h}_{ij} + d_{3} \, h_{ij} \, \Big) \, T_{ij}^{(2)} + d_{4} \, \vec{p}^{\,2} \\ & T_{ij}^{(2)} = - \frac{1}{2 \, c_{1}} \left(d_{1} \, T_{ij}^{(1)} + d_{2} \, \dot{h}_{ij} \, + d_{3} \, d_{3} \, d_{3} \right) \\ & T_{ij}^{(1)} = \frac{1}{f_{2} + \vec{p}^{\,2} \, f_{3}} \left(\left(2 \, c_{1} \, c_{3} - \, \vec{p}^{\,2} \, d_{1} \, d_{3} \, d_{3} \, d_{3} \, d_{3} \, d_{3} \, d_{3} \right) \\ & T_{ij}^{(1)} = \frac{1}{f_{2} + \vec{p}^{\,2} \, f_{3}} \left(\left(2 \, c_{1} \, c_{3} - \, \vec{p}^{\,2} \, d_{1} \, d_{3} \, d_$$

- **Modified graviton:**
- **Modified Scalar Sector:**

$$\mathcal{G}_{\tau} = \frac{\bar{\mathcal{G}}_{\tau}}{f_{2} + \vec{p}^{2} f_{3}} \qquad \mathcal{F}_{\tau} = \mathcal{F}_{\tau}(p^{2}$$

$$\boxed{N =: \frac{d\bar{\mathcal{G}}_{S} T}{\Theta}}$$

$$\boxed{\mathcal{F}_{S} = \frac{1}{a^{2}} \frac{dN}{d\eta} - \bar{\mathcal{F}}_{S}}$$

$$\boxed{\bar{\mathcal{G}}_{S} \neq \mathcal{G}_{\tau}(p^{2})} \qquad \overline{\bar{\mathcal{F}}_{S} \neq \mathcal{F}_{\tau}(p^{2})}$$

$$\boxed{\mathcal{G}_{\tau}(\vec{p}^{2} = 0) = \bar{\mathcal{G}}_{S}, \quad \mathcal{F}_{\tau}(\vec{p}^{2} = 0) = }$$

4. Stability:

With Torsion, L4

 $\bar{\mathcal{G}}_{\mathcal{S}} = \mathcal{G}_{\tau} > 0$ $T = \mathcal{F}_{\tau} \left(c_g^2 - 2 \right) < 0$

- action for the graviton <-|-> action for the scalar
 - $\mathcal{G}_{\tau} > 0, \mathcal{F}_{\tau} > 0, \mathcal{F}_{S} > 0, \mathcal{G}_{S} > 0.$
- (And other "healthy criteria") Do not meet contradictions
 - Which theories avoid the No-Go?
 - With Torsion L5, that at some time satisfy

Mixing with Torsion perturbations has broken the link between the

$$\eta^*) = 0$$

4. Stability: There are healthy cosmologies with L5

• example. A proof of principle

• S. Mironov and M. V-V, arXiv:2405.08673

$$0, \mathcal{F}_{\mathcal{S}} > 0, \mathcal{G}_{\mathcal{S}} > 0.$$

$$\frac{\eta}{3(\tau^{2} + \eta^{2})^{\frac{7}{6}}}, \quad \phi = \eta, \quad x = -\frac{1}{3(1 + \eta^{2})^{\frac{1}{6}}},$$

$$\frac{\eta}{3(1 + \eta^{2})^{\frac{1}{6}}}, \quad \phi = \eta, \quad x = -\frac{1}{3(1 + \eta^{2})^{\frac{1}{6}}},$$

$$\frac{\eta}{3(1 + \eta^{2})^{\frac{1}{6}}}, \quad \phi = \eta, \quad x = -\frac{1}{3(1 + \eta^{2})^{\frac{1}{6}}},$$

$$\frac{\eta}{3(1 + \eta^{2})^{\frac{1}{6}}}, \quad \phi = \eta, \quad x = -\frac{1}{3(1 + \eta^{2})^{\frac{1}{6}}},$$

$$\frac{\eta}{3(1 + \eta^{2})^{\frac{1}{6}}}, \quad \phi = \eta, \quad x = -\frac{1}{3(1 + \eta^{2})^{\frac{1}{6}}},$$

$$\frac{\eta}{3(1 + \eta^{2})^{\frac{1}{6}}}, \quad \phi = \eta, \quad x = -\frac{1}{3(1 + \eta^{2})^{\frac{1}{6}}},$$

$$\frac{\eta}{3(1 + \eta^{2})^{\frac{1}{6}}}, \quad \phi = \eta, \quad x = -\frac{1}{3(1 + \eta^{2})^{\frac{1}{6}}},$$

$$\frac{\eta}{3(1 + \eta^{2})^{\frac{1}{6}}}, \quad \phi = \eta, \quad x = -\frac{1}{3(1 + \eta^{2})^{\frac{1}{6}}},$$

$$\frac{\eta}{3(1 + \eta^{2})^{\frac{1}{6}}}, \quad \phi = \eta, \quad x = -\frac{1}{3(1 + \eta^{2})^{\frac{1}{6}}},$$

• S. Mironov and M. V-V, arXiv:2405.08673

Conclusions

- The mathematically and physically unjustified assumption of a torsionless spacetime leads to accidental relations at linear order, which restrict the healthiness of the solutions. Simplifications enable the global instability issues.
- <u>The full Horndeski theory (with L5) with both curvature and torsion can support</u> nonsingular, stable and subluminal cosmological solutions at all times. The usual No-Go theorem that holds in a curved spacetime is avoided.
- No-Go theorem in L4 Galileons with torsion.

References

[1] G. W. Horndeski, "Second-order scalar-tensor field equations in a four-dimensional space," International Journal of Theoretical Physics, vol. 10, no. 6, pp. 363–384, 1974.

A. Nicolis, R. Rattazzi, and E. Trincherini, "Galileon as a local modification of gravity," Physical Review D, vol. 79, no. 6, 2 p. 064036, 2009.

[3] C. Deffayet, G. Esposito-Farese, and A. Vikman, "Covariant galileon," Physical Review D, vol. 79, no. 8, p. 084003, 2009. [4] C. Deffayet, O. Pujolas, I. Sawicki, and A. Vikman, "Imperfect Dark Energy from Kinetic Gravity Braiding," JCAP,

vol. 10, p. 026, 2010.

[5] A. Padilla and V. Sivanesan, "Covariant multi-galileons and their generalisation," JHEP, vol. 04, p. 032, 2013.

[6] D. B. Fairlie, J. Govaerts, and A. Morozov, "Universal field equations with covariant solutions," Nucl. Phys. B, vol. 373, pp. 214–232, 1992.

T. Kobayashi, "Horndeski theory and beyond: a review," Reports on Progress in Physics, vol. 82, no. 8, p. 086901, 2019. [7]

[8] S. Arai, K. Aoki, Y. Chinone, R. Kimura, T. Kobayashi, H. Miyatake, D. Yamauchi, S. Yokoyama, K. Akitsu, T. Hiramatsu et al., "Cosmological gravity probes: connecting recent theoretical developments to forthcoming observations," arXiv preprint arXiv:2212.09094, 2022.

References

[9] V. A. Rubakov, "The null energy condition and its violation," Physics-Uspekhi, vol. 57, no. 2, p. 128, 2014.

modified Genesis," JCAP, vol. 08, p. 037, 2016.

vol. 94, no. 4, p. 043511, 2016.

field," Phys. Rev. D, vol. 94, no. 12, p. 123516, 2016.

[14] S. Akama and T. Kobayashi, "Generalized multi-Galileons, covariantized new terms, and the no-go theo- rem for nonsingular cosmologies," Phys. Rev. D, vol. 95, no. 6, p. 064011, 2017.

vol. 11, p. 047, 2016.

- [10] M. Libanov, S. Mironov, and V. Rubakov, "Generalized Galileons: instabilities of bouncing and Genesis cosmolo- gies and
- [11] T. Kobayashi, "Generic instabilities of nonsingular cos-mologies in Horndeski theory: A no-go theorem," Phys. Rev. D,
- [12] R. Kolevatov and S. Mironov, "Cosmological bounces and Lorentzian wormholes in Galileon theories with an extra scalar
- [13] S. Mironov, "Mathematical Formulation of the No-Go Theorem in Horndeski Theory," Universe, vol. 5, no. 2, p. 52, 2019.
- [15] P. Creminelli, D. Pirtskhalava, L. Santoni, and E. Trincherini, "Stability of Geodesically Complete Cos- mologies," JCAP,
- [16] S. Mironov and A. Shtennikova, "Stable cosmological so-lutions in Horndeski theory," JCAP, vol. 06, p. 037, 2023.

References

[17] Y. Ageeva, P. Petrov, and V. Rubakov, "Nonsingular cosmological models with strong gravity in the past," Phys. Rev. D, vol. 104, no. 6, p. 063530, 2021.

[18] F. W. Hehl, P. Von Der Heyde, G. D. Kerlick and J. M. Nester, "General Relativity with Spin and Torsion: Foundations and Prospects," Rev. Mod. Phys. 48 (1976), 393-416.

[19] S. Mironov, V. Rubakov, and V. Volkova, "Bounce beyond Horndeski with GR asymptotics and γ-crossing," JCAP, vol. 10, p. 050, 2018.

[20] A. Golovnev and T. Koivisto, Cosmological perturbations in modified teleparallel gravity models, J. Cosmol. Astropart. Phys. 11 (2018) 012.

[21] A. Golovnev and M.-J. Guzman, Nontrivial Minkowski backgrounds in f(T) gravity, Phys. Rev. D 103, 044009 (2021).

[22] J. Beltrán Jime'nez and K.F. Dialektopoulos, Non-linear obstructions for consistent new general relativity, J. Cosmol. Astropart. Phys. 01 (2020) 018.

[23] J. Beltrán Jime´nez, L. Heisenberg, T.S. Koivisto, and S. Pekar, Cosmology in f(Q) geometry, Phys. Rev. D 101, 103507 (2020)

Additional Material Background Equations

3. Torsionful Galileons about the FLRW background

- Linearization: structure of the background equations
- Example: In up to Quartic S4, We can solve for H, $\ddot{\varphi}(\eta)$ and y, x. e.g.

$$\mathcal{E}_{K_{ijk}} = \epsilon_{ijk} \, \frac{2}{a^6} G_4 \, y = 0 \,,$$

 $\mathcal{E}_{K_{ij0}}=0\,,$

$y(\eta) \equiv 0$

$x(\eta) = -\frac{a^3 \mathcal{G}_{\tau} \left(8 H X G_{4,X} + a \dot{\phi} \left(G_3 - 2 G_{4,\phi}\right)\right)}{8 G_4^2}$

Additional Material Linearization

3. Torsionful Galileons about the FLRW background - Linearization: Notation. The perturbed metric $\mathrm{d}s^2 = (\eta_{\mu\nu} +$ Spatially flat FLRW background in conformal time $\eta_{\mu\nu} \mathrm{d}x^{\mu} \,\mathrm{d}x^{\nu} = a^2 (\eta$ 4 scalars, 2 (2-component) vectors and a (2-component) tensor perturbation (graviton) $\delta g_{\mu\nu} \,\mathrm{d}x^{\mu} \,\mathrm{d}x^{\nu} = a^2 (\tau)$ $+2\left(\partial_{i}B+S_{i}\right)\mathrm{d}\eta$ $+2\partial_i\partial_j E + \partial_i F_i$

$$\delta g_{\mu\nu}) \,\mathrm{d}x^{\mu} \,\mathrm{d}x^{\nu}$$

$$\eta) \left(-\mathrm{d}\eta^2 + \delta_{ij} \,\mathrm{d}x^i \,\mathrm{d}x^j \right)$$

$$\begin{aligned} \eta &\left(-2 \,\alpha \,\mathrm{d}\eta^2 \right) \\ &\left(-2 \,\psi \,\delta_{ij} \right) \\ &+ \partial_j F_i + 2 \,h_{ij} \right) \,\mathrm{d}x^i \,\mathrm{d}x^j \end{aligned}$$

3. Torsionful Galileons about the FLRW background

Linearization: Notation

- Perturbation of contortion: with $K_{\mu\nu\sigma} = -K_{\sigma\nu\mu}$, 24 independent components 8 scalars,

$$\delta K_{i00}^{
m scalar} = \partial_i C^{(1)}$$

 $\delta K_{ij0}^{
m scalar} = \partial_i \partial_j C^{(2)} + \delta_{ij} C^{(3)} +$
 $\delta K_{i0k}^{
m scalar} = \epsilon_{ikj} \partial_j C^{(5)}$
 $\delta K_{ijk}^{
m scalar} = (\delta_{ij} \partial_k - \delta_{kj} \partial_i) C^{(6)}$

 $+ \epsilon_{ikl} \partial_l \partial_j C^{(7)} + \left(\epsilon_{ijl} \partial_l \partial_k - \epsilon_{kjl} \partial_l \partial_l \right) C^{(8)}$

3. Torsionful Galileons about the FLRW background

Linearization: Notation

6 (2-component) vectors

and 2 (2-component) tensors

Ktensor $\delta K_{ijk}^{\mathrm{tensor}}$

$$(D^{0} + \partial_{j}V_{i}^{(3)})$$

 $(D^{0} - \partial_{k}V_{i}^{(4)})$
 $(D^{0} - \delta_{kj}V_{i}^{(5)} + \partial_{j}\partial_{i}V_{k}^{(6)} - \partial_{j}\partial_{k}V_{i}^{(6)})$

$$= T_{ij}^{(1)}$$
$$= \partial_i T_{jk}^{(2)} - \partial_k T_{ji}^{(2)}$$

Additional Material Details No-Go

4. Stability: $N = \frac{a \mathcal{G}_{\tau} T}{\Theta}$

Even with Zeros of Θ

 $> a^2 \mathcal{F}_{\tau} > 0$

S. Mironov, V. Rubakov, and V. Volkova, (2018).

S. Mironov, (2019).

N in between any two zeros η_z

0?

