

Rotation Accounting Jahd Black Hole Shadows

Stanislav Alexeyev, Artem Baiderin, Oleg Zenin Sternberg Astronomical Institute & Physics Faculty Lomonosov Moscow State University

Supported by BSF via grant Nº 23-22-00073

Constraints on gravity models from black hole shadows

Pic is taken from https://www.eso.org/public/images/shadow-evt/

d

$$ds^2=igg(1-rac{2M}{r}+rac{Q^2}{r^2}igg)dt^2-rac{dr^2}{ig(1-rac{2M}{r}+rac{Q^2}{r^2}ig)}-r^2d\Omega^2
onumber \ s^2=rac{\Delta}{
ho^2}ig(dt-a\sin^2 heta d ilde{arphi}ig)^2-rac{\sin^2 heta}{
ho^2}ig((r^2+a^2)d ilde{arphi}-adtig)^2-rac{
ho^2}{\Delta}dr^2-
ho^2d heta^2$$

A.Zakharov, Phys. Rev. D, Vol.90, P.062007 (2014) ... CA, А.А Байдерин, А.В. Немтинова, О.И. Зенин, ЖЭТФ 165, 508 (2024) arXiv 2404.16079

Schwarzschild BH shadow

The most probable values of the rotation parameter and inclination of the rotation plane in BH:

M87*: $a = 0.9375^{[1]}$ Sgr A*: a = 0.5 or a = 0.94and $\theta = \pi/6^{[2]}$

[2] Cui, Y.; others, Nature 621, 711–715, (2023).

[1] Akiyama, K.; others, Astrophys. J. Lett. 930, L13, (2022).

Kerr BH shadow

Pic is taken from https://odysseyedu.wordpress.com/black-hole-shadow/

Horndesky theory

$$ds^{2} = -\left(1 - \frac{2M}{r} - \frac{8\alpha_{5}\eta}{5r^{3}}\right)dt^{2} + \frac{1}{1 - \frac{2M}{r} - \frac{8\alpha_{5}\eta}{5r^{3}}}dr^{2} + r^{2}d\Omega^{2}.$$

$$g_{tt} = -\left(1 - \frac{2Mr}{\rho^{2}} - \frac{8\alpha_{5}\eta}{5r}\right),$$

$$g_{t\phi} = -\frac{2a\sin^{2}\theta}{5r\rho^{2}}\left(4\alpha_{5}\eta + 9Mr^{2}\right),$$

$$g_{rr} = \rho^{2}\left(-\frac{8\alpha_{5}\eta}{5r} + a^{2} - 2Mr + r^{2}\right)^{-1},$$

$$g_{\theta\theta} = \rho^{2},$$

$$g_{\phi\phi} = \frac{\sin^{2}\theta}{\rho^{2}}\left(r^{4} + 2ar^{2}\cos^{2}\theta + a^{4}\cos^{4}\theta + \frac{8a^{2}\alpha_{5}\eta\sin^{2}\theta}{5r} + 2aMr\sin^{2}\theta + a^{2}r^{2}\sin^{2}\theta + a^{4}\cos^{2}\theta + a^{4}\cos^{2}\theta\right),$$

Horndesky theory

SA, A.Baiderin, O.Zenin, submitted to EPJ C

SA, A.Baiderin, O.Zenin, submitted to EPJ C

Horndesky theory The dependence of the shadow size against rotation a

a

SA, A.Baiderin, O.Zenin, submitted to EPJ C

Horndesky theory The dependence of shift (up case) and distortion (down case) against rotation a

Bumblebee model

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \frac{1+l}{1 - \frac{2M}{r}}dr^{2} + r^{2}d\Omega^{2},$$

$$egin{aligned} g_{tt} &= rac{r^{-1+\sqrt{1+l}}AB}{\sqrt{1+l}CD}, \ g_{t\phi} &= -rac{ar^{-l+\sqrt{1+l}}EB\sin^2 heta}{(1+l)CD}, \ g_{rr} &= -rac{(1+l)r^{-l+\sqrt{1+l}}B}{CG}, \ g_{ heta heta} &= r^{1+\sqrt{1+l}} + rac{a^2(-4+8\sqrt{1+l})r^{-l+\sqrt{1+l}}\cos^2 heta}{8-2(1+\sqrt{1+l})}, \ g_{\phi\phi} &= rac{r^{-l+\sqrt{1+l}}\sin^2 heta(B+5a^2\cos^2 heta)}{(1+l)CD} \ & imes \ (D(1+l)-Ka^2\cos^2 heta), \end{aligned}$$

$$\begin{split} &A = (2Mr^{1+l} - r^{1+\sqrt{1+l}} - a^2\cos^2\theta - a^2l\cos^2\theta), \\ &B = -3r^2 + \sqrt{1+l}r^2 - 3a^2\cos^2\theta - 4a^2\sqrt{1+l}\cos^2\theta, \\ &C = -3 + \sqrt{1+l}, \\ &D = r^2 + a^2\sqrt{1+l}\cos^2\theta, \\ &E = -r^2 - lr^2 - 2\sqrt{1+l}Mr^{\sqrt{1+l}} + \sqrt{1+l}r^{1+\sqrt{1+l}}, \\ &G = a^2 + a^2l - 2Mr^{1+l} + r^{1-\sqrt{1+l}}, \\ &F = -2Mr^{\sqrt{1+l}} + r^{1+\sqrt{1+l}} - a^2l\cos^2\theta, \\ &K = \sqrt{1+l}F - r - 2lr^2 - D. \end{split}$$

Casana, R.; Cavalcante, A.; Poulis, F.P.; Santos, E.B. Phys. Rev. D 97, 104001, (2018) SA, A.Baiderin, O.Zenin, submitted to EPJ C, S.Capozziello, S.Zare, H.Hassanabadi, e-Print: 2311.12896

I=0.3

l=0.35

Bumblebee model

a=0.5

-2

0

х

a=0.94

6

Bumblebee model The dependence of the shadow size against rotation a

SA, A.Baiderin, O.Zenin, submitted to EPJ C

а

Bumblebee model The dependence of shift (up case)

and distortion (down case) against rotation a

6

4

Scalar Gauss-Bonnet Gravity

$$ds^{2} = -f_{s}\left(1 + \frac{\xi}{3r^{3}f_{s}}\right)dt^{2} + \frac{\left(1 - \frac{\xi}{r^{3}f_{s}}\right)}{f_{s}}dr^{2} + \left(r^{2} + \frac{\xi}{3r} + \frac{2\xi M}{3r^{2}}\right)d\Omega^{2},$$

$$g_{tt} = \frac{r^2(E + F\cos^2\theta)}{AB},$$

$$g_{t\phi} = -\frac{aCD\sin^2\theta}{AB},$$

$$g_{rr} = -\frac{AB}{r^2(E + F)},$$

$$g_{\theta\theta} = \frac{B}{3r^2},$$

$$g_{\phi\phi} = \frac{1 + Q + 9a^4r^4A\cos^4\theta + 6a^2r^2G\sin^2\theta}{3r^2AB}$$

$$+ \frac{9a^4r^4A\cos^2\theta\sin^2\theta}{3r^2AB}.$$

$$\begin{split} A &= \xi + 2Mr^2 - r^3, \\ B &= 2\xi M + \xi r + 3r^4 + 3a^2r^2\cos^2\theta, \\ C &= 2\xi M + \xi r + 3r^4, \\ D &= A + 16M^2r^2 - 16Mr^4 + 4r^5, \\ E &= 32\xi M^3r - 16\xi M^2r^2 - 8\xi Mr^3 + 4\xi r^4 \\ &+ 48M^2r^5 - 48Mr^6 + 12r^7, \\ F &= -3a^2\xi - 6a^2Mr^2 + 3a^2r^3, \\ G &= 16\xi M^3r^5 + 2\xi r^6 + 24M^2r^7 - 24Mr^8 + 6r^9, \\ K &= 2\xi^2M + \xi^2r + 4\xi M^2r^2 + 2\xi r^4 + 6Mr^6 - 3r^7, \\ Q &= 4\xi^3M(M+r) + \xi^2r^2(\xi + 2M^3 + 4M^2r \\ &+ 10Mr^2 + 5r^3) + 3\xi r^6(8M^2 + r^2) + 9r^{10}(2M-r). \end{split}$$

X

Scalar Gauss-Bonnet Gravity

Scalar Gauss-Bonnet Gravity The dependence of the shadow size against rotation a

SA, A.Baiderin, O.Zenin, submitted to EPJ C

а

Scalar Gauss-Bonnet Gravity The dependence of shift (up case) and distortion (down case)

against rotation a

Conclusions

We apply the most probable configurations for Sgr A*. Using the constrains on effective shadow size obtained by EHT the values $\alpha > 0.5$ at a=0.5 for Horndesky model were excluded. In contrast for the fast rotation at a=0.94 all the configurations appear to be allowed. The shadow distortion differs from Kerr one very little for a=0.5. For a=0.94 it becomes less during α growing (from 5.5% at Kerr case till 2% at α =1). So the additional parameter acts opposite to rotation making its influence less.

For bumblebee model all the configurations appeared to be acceptable. For each I its own critical value of a exists ==> the fast rotation with a=0.94 is excluded for most range of I values. In contrast to the previous case the distortion grows when I becomes larger (up to 9.2% for I=0.2 and I=0.35). So in bumblebee model the additional parameter enhances the rotational effect.

In Gauss-Bonnet scalar gravity the shadow size has minor differences from Kerr case in contrast to the static case where the difference greater even for small values of coupling parameter (ξ =0.3 is maximally possible value). Analogously to bumblebee model all the configurations are allowed. For a=0.5 the distortion is greater than in pure Kerr case but for a=0.94 the distortion appears to be less (from 3.2% at ξ =0.25). So the theory weakens the effect of rotation. Generally for three considered models two of them (Horndesky model and Gauss-Bonnet scalar gravity) weaken the effect of rotation and bumblebee model enhances it.

This conclusion matches the previous one at non-local gravity models study: extended gravity theories by themselves correct the effect of rotation in both directions. This fact seems to be important as the accuracy of shadow images permanently increases.

Thank you for your atention!

