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Key statements of the talk

o Horndeski theories and their generalisations are suitable frameworks
for traversable wormholes
(modified gravity instead of exotic matter)

o Stability at the level of perturbations requires special attention
(ghosts and tachyons are around the corner)

o Stability analysis for dynamical wormholes — work in progress

Based on: 2212.05969, 2404.06297, 2406.xxxx
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Traversable wormholes and their stability

Einstein, Rosen (1935), Wheeler (1962), Ellis (1973), Bronnikov (1973),
Morris, Thorne (1988)

o The non-trivial feature of traversable wormholes: the necessity to fill
the throat with matter, which violates the NEC/NCC

o Different options for supporting the throat: quantum effects (for
microscopic wormholes), phantom scalar field, modified gravity

o One of the approaches to modifying gravity is to add extra DOFs, e.g.
coupling GR to a scalar field — Scalar-tensor theories
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Generalized Galileon a.k.a. Horndeski theory and beyond

Horndeski (1974) Zumalacarregui, Garcia-Bellido (2014)
Deffayet, Gao, Steer, Zahariade (2011) Gleyzes, Langlois, Piazza, Vernizzi (2015)

S= /dAX\/—g(ﬁz + L3+ La+Ls+ Lsw),
Lo = F(m, X),
Ls = K(x, X)Onr,
L4 = —Ga(m, X)R + 2Gax(m, X) [(On)* — mpm®],
Ls = Gs(m, X)G* 7 + %Gsx [(Dﬂ')3 = 30rmu ™ + 2w,
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m is a scalar field, X = g"m y7 ., 74y = Oum, Tpw = Vo, Vyum, Or = gH*'v, v, m,

Gix = 0G;/0X.
@ Healthy NEC/NCC violation
@ Stability issue: pathological DOFs may show up on the level of perturbations
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Types of instabilities

o Consider a spherically-symmetric scalar field 7 = mo(r) + x(t, r) in
Minkowski space:

75 = [t |FU(2 - 3V - S

©

Dispersion relation and energy density for x:
Uuw? = Vp?>+ W,

1 . 1 1
Too = EUX2 + EV(&'X)2 + EWX2

©

Stable background: U >0, V>0, W2>0

Ghost instability: U <0,V <0 (quantum-mechanically unstable
background)

(7]

(4]

Gradient instability (imaginary w at high p):
U>0,V<0or U<0,V>0

@ Tachyonic instability (imaginary w atlow p): U>0, V>0, W<0



Stability issues in Horndeski theories: no-go theorem

o Wormholes in L3 are always plagued with ghost (no-go theorem in
L3):

1
L3 = _ﬂR—{_ F(m, X)+ K(m, X)On
Rubakov, 2016 (1601.06566)

o No-go theorem is still valid for £3 + conventional scalar
Kolevatov, Mironov, 2016 (1607.04099)

o No-go theorem for wormholes in Horndeski theories: static, spherically
symmetric wormholes suffer from ghost instabilities in some region of
space around them

Evseev, Melichev, 2018 (1711.04152)

o Evading the no-go theorem for wormholes in beyond Horndeski theory
Franciolini, Hui, Santoni, Trincherini, 2019
Mironov, Rubakov, VV, 2019
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Wormhole: static background setup

J(r)

o Static, spherically-symmetric wormhole:
2
ds? = —A(r) dt® + % + J2(r) (d6? + sin® 6 d?)

where
A(r) > Amin >0, B(r) > Bmin >0, J(r) > Rnin>0

o Asymptotically flat geometry
o Background Galileon field 7(r) — static and spherically-symmetric

Stable solutions are free from any kind of pathological DOFs among linear
perturbations, i.e. ghosts, gradient instabilities, tachyons
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Perturbations about a wormhole

o 2+1 DOFs: 1 odd-parity and 2 even-parity modes (w.r.t. 2D reflection)
o Odd-parity sector (Q):

2
5553/—/dtd \/7J2 [?Ang —%(Q’)2 e(z+1) HQ? - V(r)QZ:| J

o Even-parity sector (v, i =1,2):

Sgsgn—/dtd \/> ( iiv ’VJ —g,jvi,\/‘// QUV VJ/——Z Mez) vvf MUV’VJ) J

Stability conditions (high energy modes)

No ghosts: G >0, Ki; >0, det(K) >0,
No radial gradient instabilities: F >0, Gi; >0, det(G) >0,
No angular gradient instabilities: #H >0, M) >0, det(Msz)) >0
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No-go theorem and its circumvention

No ghosts: G >0, Kj; >0, det(K) >0,
No radial gradient instabilities: F >0, Gi; >0, det(G) > 0,
No angular gradient instabilities: H >0, Mz); >0, det(Mz)) > 0.

The no-go theorem in Horndeski theory is based on the no-ghost constraint
for even-parity sector:

d¢

detk ~ F(2> — F) >0
=
_ (JH)
=78

o Key requirement: £ has to cross zero
Franciolini, Hui, Santoni, Trincherini, 2019

Mironov, Rubakov, VV, 2019
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No-go theorem and its circumvention

No ghosts:

G>0, Ki1>0, det(K)>0,
No radial gradient instabilities:

F >0, Gi1 >0, det(g) >0,
No angular gradient instabilities: H >0, Mz)1; >0, det(Mz)) > 0.

The no-go theorem in Horndeski theory is based on the no-ghost constraint
for even-parity sector:

d¢ dé
detkC ~ F(2 > = F) > 0 det K ~ F(2> = F) >0

=
_ (JH)? . PH(H-D)
‘=70 ="

o Key requirement: £ has to cross zero

o One evades the no-go by going beyond Horndeski thanks to a new
contribution D(Fa, Fs)

Franciolini, Hui, Santoni, Trincherini, 2019

Mironov, Rubakov, VV, 2019
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Stable wormhole: reverse engineering

o Choose a specific wormhole metric:

2
ds? = —A(r) dt® + % + J2(r) (d6? + sin? 0 dp?)
r

A=1, B:l—l—ZSech( ! ), J:In|:1+2cosh( r )]
Fmin I'min

and the Galileon field profile:

4
r sech (r'. )
) -1, - X=-—"7
2 (1 + sech (%))
o Take an Ansatz for Lagrangian functions as a power series of X:
F(m, X) = fo(m) + fu(m) - X + fo(7) - X2,

mo(r) = tanh (

I'min

Ga(m, X) = 5 + gao(n) + gua(m) - X,
Fa(m, X) = fao(7) + far(w) - X

o Reconstruct the functions f;, gs; and f; by satisfying:
(a) background equations of motion (b) stability conditions
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Semi-stable wormhole: an example

o Stability: no ghost, radial and angular gradient instabilities
A
— det(R)
R det(G)
-------- det(M)

-1000 -500 0 r—1500 -1000  -500 0 500

o Reconstructed Lagrangian functions:

There exists a wormhole solution that is stable w.r.t. high energy
perturbations
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Semi-stable wormhole: an example

o Stability: no ghost, radial and angular gradient instabilities
A
— det(K)
% —eee det()
-------- det(M)

-1000 -500 0 r—1500 -1000  -500 0 500

o Reconstructed Lagrangian functions:

There exists a wormhole solution that is stable w.r.t. high energy
perturbations — what about low energy modes?
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Complete stability: tachyons

B 2 . BH?
5@ = [aear[Br [Lor- @y - 1D ugrvine?],

/A 1 o1 P . 1 o1 .
chegn = /dtdr EJZ (EK:UV’VJ - Egijvﬂvﬂ - QijV’VJl — EZZM(gz);jV’VJ — EM’JVIVJ)

Complete set of stability conditions

No ghosts: G >0, Koz >0, detK >0,
No radial gradient instabilities: F >0, Gy >0, detG > 0,
6H
2

No angular gradient instabilities or tachyons: #H >0, V(r)> —

Moz >0, detG-det M > %Mzz -G
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Complete stability: tachyons

2 2
8= /dtdr f [%02 - - WJ—T) HQ? - V(r)Qz] ,

eegn = /dtd H (EK:UV’VJ _glj Vil — Q,_,V i’ — —Z M(gz) vivi— MUV'VJ)

Complete set of stability conditions

No ghosts: G >0, Koz >0, detK >0,
No radial gradient instabilities: F >0, Gy >0, detG > 0,
6H
2

No angular gradient instabilities or tachyons: #H >0, V(r)> —

Moz >0, detG-detM > %Mzz J11

o The existing solution still was not checked w.r.t. to tachyons
o This set of stability constraints applies to an arbitrary
spherically-symmetric solutions within general beyond Horndeski theory
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Superluminality problem

H? . BH? L0+ 1
s@ = [ drary/ 22 [A—Q2 - B oy - & f ) nez-vine?],
s@. = /dt dry/ EJZ (EKUVi"/j —gu Vil — Quvivi — —Z Mgzyv'vi — Mijvivj)

Propagation speeds

Odd-parity modes: c,2 = g, cg =

)

N
RIS

Even-parity modes (radial): c,2112 are eigenvalues of K~1G,

Even-parity modes (angular): c; 1,2 are eigenvalues of K:_]'M(ez)
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Superluminality problem

2 2
odd—/dtdr\f [%ohﬁ(o’f WJ“) HQ? - V(e

s@. = /dt dry/ EJZ (EKU"’i"/j —gu Vil — Quvivi — —E Mgzyv'vi — Mijvivj)

.
Propagation speeds
. g g
Odd-parity modes: c,2 = 7 cg = =

Even-parity modes (radial): c,2112 are eigenvalues of K~1G,

Even-parity modes (angular): c§7 1,2 are eigenvalues of K:_]'M(ez)

A

det(K)
a a A det [ 72— det(W)

One of the sound speeds c2 > 1.

-1500 -1000  -500 0 500 r
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Wormhole: dynamical background setup

J(r)

o Dynamical spherically-symmetric setting:

dr?

B(t,r)

ds®> = —A(t, r) dt? + + J2(t,r) (d6? + sin® 0 dp?)

where
A(t, r) > Amin > 0, B(t, r) > Bpin > 0, J(t, r) > Rpin >0

o Time-dependent background scalar field 7 (t, r)

o Motivation:
o stability analysis for dynamical black hole solutions
o wormhole in a cosmological setting
o a "Universe in the laboratory" scenario
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Perturbations about a dynamical wormhole

o Modification of the odd-parity sector (sole DOF — Q):

72 . BH? Le+1
oddstatn:_/dtdr\/7 [A_ng_T(Ql)z_%'HQZ_V(r)Qz]
@ B, [ FH ., AB-GW: .,
Sodd,dn = /dtdr\/;J [A.gf+B.D2Q A6ri5 ;2@)

DH? 5o HE+1) 2 _ v 2
t2B 4 5 9@~ —— HQ —V(r)Q}

o New coefficient D is non-trivial only in dynamical case
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Perturbations about a dynamical wormhole

o Modification of the odd-parity sector (sole DOF — Q):

H? ., BH? Qe+1
odd static — /dtdr \/7 |:A_ng - 7(0/)2 - % : HQZ - V(r)Qz]
5(2)

B , FH? - AB - GH? "2
@) = /dtdr\/AJ [A-g}‘+B~D2Q i or s 5@

DH? . Me+1) o2 \_/(r)Qz}

2B i
2B B 29 NE

o New coefficient D is non-trivial only in dynamical case

Stability conditions (high energy modes)

f
No ghOStS. G>0 — m >0
. Lo e B D?
No radial gradient instabilitiess: F >0 — F > “Ag
No angular gradient instabilities: H >0
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Conclusion and outlook

o There are no completely stable static, spherically symmetric wormholes
in Horndeski theory

o It is possible in principle to construct a wormhole free from ghosts and
gradient instabilities in beyond Horndeski theory (also in DHOST)

o Universal set of stability constraints is developed for an arbitrary
static, spherically-symmetric solution in beyond Horndeski theory

o Stability analysis for dynamical spherically-symmetric setting in beyond
Horndeski theory — in progress (even sector, no-go theorem?)
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Thank you for your attention!

22/05/2024 16 /16



