False vacuum decay around black holes

Ratmir Gazizov

Moscow State University & Institute for Nuclear Research of RAS

May 21, 2024

The Higgs vacuum

The effective Higgs potential has a false vacuum:

$$V_{eff}(\phi) = rac{1}{4} \lambda_{eff}(\phi) \phi^4$$

The field can decay due to quantum tunneling.

The effective Higgs potential

D. Buttazzo et al (2013)

Coleman instantons

$$S = \int d^4x \left(rac{1}{2} (\partial_t \phi)^2 - rac{1}{2} (\partial_x \phi)^2 - V(\phi)
ight)$$

The probability of false vacuum decay in flat space-time:

$$P\sim e^{-S_E}$$

Periodic instantons in a thermal bath (for the potential $V(\phi)$):

$$T_{Period} = \beta$$

For a very high temperature T:

$$P \sim e^{-E_{sph}/T}$$

The potential with false vacuum

The Euclidean solution

False vacuum decay in the presence of BH

Hawking temperature:

$$T_H = \frac{M_{Pl}^2}{8\pi M_{BH}}$$

Conjecture: small black holes have high temperatures \implies significantly increase the decay probability.

P. Burda et al (2016)

A calculation from first principles is needed.

(see also A. Shkerin, S. Sibiryakov (2021))

Formulation from first principles

Decay probability from functional integral:

$$P = \int D\phi_f D\phi_i D\phi'_i \left\langle \phi_f \right| \hat{S} \left| \phi_i \right\rangle \left\langle \phi_i \right| \hat{\rho} \left| \phi'_i \right\rangle \left\langle \phi'_i \right| \hat{S}^{\dagger} \left| \phi_f \right\rangle$$

Fields ϕ and ϕ' can be written as a united field on the double-bent time contour.

Saddle-point approximation:

 $P \sim e^{iS[\phi_{cl}] + iB[\phi_{cl}]}$

The contour on the complex time plane

S.Yu. Khlebnikov et al (1991)

V.A. Rubakov, M.E. Shaposhnikov (1996)

Scalar field in Schwarzschild metric

$$S = \int \sqrt{-g} d^4 x \left(\frac{1}{2}g_{\mu\nu}\partial^{\mu}\phi\partial^{\nu}\phi - V(\phi)\right)$$
$$ds^2 = f(r) dt^2 - \frac{dr^2}{f(r)} - r^2 d\Omega^2, \quad f(r) = 1 - \frac{2M}{r}, \quad M_{PI} = 1$$

Substitution:

$$\phi = \frac{\varphi}{r}, \quad x = r + 2M \ln(r - 2M),$$

$$S = 4\pi \int dt dx \left(\frac{1}{2} \left(\partial_t \varphi \right)^2 - \frac{1}{2} \left(\partial_x \varphi \right)^2 - \frac{1}{2} U(x) \varphi^2 - r^2 f(r) V\left(\frac{\varphi}{r} \right) \right),$$

The toy potential:

$$V\left(\phi
ight)=rac{m^{2}}{2}\phi^{2}-rac{m\sqrt{\lambda}}{2}\phi^{3}+rac{\lambda}{8}\left(1-arepsilon
ight)\phi^{4}$$

We set the parameter $\epsilon = 0.1$, then the thin wall approximation is valid.

The potential V used in this work

Boundary conditions

The boundary conditions can be imposed on the Fourier coefficients

$$\phi_i(x) = \int_0^\infty \frac{d\omega}{\sqrt{4\pi\omega}} \sum_{I=R,L} \left(a_{I,\omega} f_{I,\omega}(x) e^{-i\omega t_i} + b_{I,\omega} f_{I,\omega}^*(x) e^{i\omega t_i} \right)$$

$${\sf a}_{{\sf I},\omega}={\sf b}_{{\sf I},\omega}^*{\sf e}^{-\omegaeta_{{\sf I}}}$$

$$\beta_{I} = \begin{cases} \beta_{H}, I = R\\ \beta_{E}, I = L \end{cases}$$

where $\beta_H = 8\pi M_{BH}/M_{Pl}^2$.

Thermal equilibrium

Period for a thermal equilibrium case:

$$\beta = \beta_H = \beta_E$$

Simplified boundary conditions:

$$\partial_{\tau}\phi(0,x) = \partial_{\tau}\phi(\beta/2,x) = 0$$

 $\partial_{x}\phi(t,-\infty) = \partial_{x}\phi(t,\infty) = 0$

The decay probability:

$$P \sim e^{-S_E}$$

Euclidean part of the contour

Numerical results

We use the Newton-Raphson method to solve the system of nonlinear equations.

The instanton in flat space-time, $N_t \times N_x = 150 \times 150$

The profile at t = 0 (dots), the thin-wall approximation (line), $N_t \times N_x = 150 \times 150$

Periodic instantons with at different β in the presence of BH $mr_h = \frac{2Mm}{M_{Pl}^2} = 12$, $(N_t \times N_x = 100 \times 300)$. Period and mass of BH are independent parameters here.

Euclidean action S as a function of period β for non-trivial instantons (blue) and sphalerons (red), $mr_h = \frac{2Mm}{M_{Pl}^2} = 12 \ (m\beta/2 \neq m\beta_H/2 = 8\pi Mm/2M_{Pl}^2 = 75.4).$

Euclidean action S_E of shalerons as a function of the inverse temperature β . Black dotted and solid blue lines correspond to presence of BH with $m\beta_H = m\beta = 8\pi m M/M_{Pl}^2$ and to decay in flat space-time.

Conclusions

- the physical solutions $\beta = \beta_H$ describing the process are static sphalerons.
- $\beta \rightarrow 0$: sphalerons with BH approach flat-space sphalerons. It means that small BHs $mr_h \ll mr_b$ do not significantly change sphalerons in a very hot environment.
- $\beta \rightarrow \infty$: a large massive BH $mr_h \ll mr_b$ changes the geometry of space \implies sphalerons change too.

Further research

• Nonequilibrium case $\beta \neq \beta_H \implies$ a new contour and new boundary conditions

• More realistic potentials: $V(\phi) = -\lambda \phi^4/4$

Thank you for the attention

The project was done with the support of the scientific program

of the National Center for Physics and Mathematics, sector 5 "Particle Physics and Cosmology", stage 2023-2025