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Main idea and result

@ The information paradox for black holes is one of the fundamental
problems in the union of gravity and quantum theory, starting with
seminal paper [Hawking '76] after the discovery of Hawking
radiation [Hawking '74]

@ Is the island approach [Almheiri et al. ‘19, ‘20, Penington '20] the solution
to information paradox?

@ Placing a black hole in a cavity (box) is known to be a natural way
to study IR scales in gravity, the thermodynamic instability etc.
[Hawking '76, Page ‘80, York '86, ...]

@ We consider the dynamics of the entanglement entropy within island
prescription for Hawking radiation in the generalization of the two-
sided Schwarzschild black hole [Hashimoto-lizuka-Matsuo '20] by intro-
ducing reflective boundaries (BCFT, techniques)

@ We found a universal effect induced by the boundary presence, which
we call “blinking” island — the disappearance of the island for a finite
time interval, that for large cavity leads to non-unitary evolution
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Introduction: information paradox

The information paradox — a (possible) violation of the
unitary evolution of closed systems containing black holes,
taking into account quantum effects, where unitary

ptot(tf) = U,Otot(to)UT7 uut =Utu =1

Important: unitary evolution implies pure state — pure state

if prot(to) = p,(to), then puoe(tr) = p2.(tr) for all tr > t

We consider a system “black hole 4+ Hawking radiation”, which
o at ty:  prot(to) = p%,(to) (pure state)

oifat tr > to:  pror(ts) # pi,(tr) (mixed state)
then there is an information paradox (non-unitary evolution)
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Introduction: Entanglement Entropy

o Total system AU B is described by piot and divided into A and B
Hiot = Ha®@ Hp, pa=Tr prot, pg =TT pror
Hp Ha

@ The entanglement entropies of the subsystems are defined as

S5(X) = Sun(px) = — Trpx log px, where X = A, B

Basic properties
Q prot = pror (pure state) & Suv(prot) =0 = S(A) = S(B)
Q [S(A)—S(B)|#0 = Sun(prot) >0 = prot # pior (mixed state)
Q Sunv(px) < Ste™(px) (thermod. entropy is always BIGGEST)

If S(A) > Sthem(pg) = |S(A) — S(B)| # 0 = pror # p2y (mixed state)
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Introduction: Bipartition

Total system “Hawking radiation (R) 4 black hole (BH)"

Hiot = Hr @ Hpn
Entanglement entropies S(R), S(BH), thermodynamic entropy
Area(horizon)

Sai" = 4G
r=ry
e ¥ = 1y is horizon * v > 1, : "Radiation”
o7 =1 > Iy is cutoff L=l system
after which
"gravity is weak" Black Hole *7 <1y :"Black Hole"

system
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Introduction: information paradox via EE

Recall that we assume pior(to) = p2,(to). If It > to:
Srad(tr) > Sgii " (tr) = |Sraa—Senl(tr) £ 0 = proc(tr) # ploe(tr)

S

‘ Incorrect behaviour — paradox ‘

[Correct behaviour — Page curve |

S(Rad)

Stherm ( B H) Sthcrm ( B PD
S(Rad)

: 0 '
tpage tevap t tpage tevap t

e "Hawking curve”: monotonic increase in entropy, exceeding
the upper limit at t > ty,.e — unitarity violation

o Page curve’: at tyage the growth is replaced by a
monotonic decrease to zero entanglement entropy, pure
state at te,ap — unitary behavior
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Introduction: island formula

The "island formula” for entanglement entropy of quantum field theory in

gravitational systems for R C X, where Hios = Hr @ Hp, R=X/R

S(R) = min {e§t [A’ej(caz) + Smatter(R UI)} }

[Almheiri et al. ‘19, ‘20, Penington ‘20, Penington et al. ‘22]

where
@ Y — spacelike Cauchy surface (e.g. constant time surface t = const)
@ 7 C R -"island", defined by extremization, 8Z — its boundary
@ Spatter — entanglement entropy of QFT on the classical background

r=ry
e 1 = 17, is horizon
r=r *r > r, : "Radiation”

oV =1y > Ty is cutoff :
system

after which
"gravity is weak"
7 =1, is boundary
of island [

o7 <7, Island [
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Schwarzschild black hole

@ The metric of the four-dimensional Schwarzschild black hole (BH) is

ds? = —f(r)dt? + ar +r2dQ; fry=1-"
f(r) 2 r

r, = 2GM is the horizon, M is BH mass, G is gravitational constant

@ Introducing Kruskal coordinates

U -2 gmt—r) L mein()
Kh ’ Kh
with the tortoise coordinate r.(r) = r + rplog|r — rp|/ry and the

surface gravity k, = 1/2r,, we can rewrite the metric in the form

ds? = —e*’dudV + r?dQ?, e20(n) — Thg=r/m
r
o Eternal (two-sided) black hole: the maximal analytic extension of
spactime to —oo < U, V < oo with constraint UV < 4r?
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Schwarzschild black hole

Kruskal diagram of Lorentzian Schwarzschild spacetime is

{r: 2GM




ETERNAL Schwarzschild black hole

e The mass of a black hole is constant, M = const,
thermodynamic equilibrium with radiation

o The loss of the black hole due to Hawking radiation is
compensated by the flux from infinity (what is it?77)

o Thermofield double state (TFD)
W) =& " In)iin)s.

where |n), g are the eigenstates with energy E, of the
matter theory Hamiltonian H, g in the left/right wedges

e Time evolution is upward in both left and right wedges
Htot = HL + HR-

TFD under H,,; is time-dependent!
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s-wave approximation (Hashimoto et al. '20)

@ The massless field ®(x*) on a spherically symmetric background of
d = 4 spacetime (for instance, Schwarzschild) is decomposed into
spherical harmonics: ®(r,t,0,¢) =3,  Yim(0,¢)fi(r, t)

@ There is a set of effective 2D theories with masses m? ~ /(/ + 1)

@ The lowest harmonic with / = 0 (s-mode) corresponds to the effec-
tive massless 2D theory of matter and it is the largest part of the
Hawking radiation away from the horizon

@ Discarding / > 0 modes, we assume that s-mode corresponds to
conformal theory (CFT) and entanglement entropy of this theory
approximates the entropy of the original 4D problem

s-wave approximation [Hashimoto-lizuka-Matsuo '20]

We consider CFT, on a two-dimensional part of Schwarzschild spacetime

ds? = —e*(dudy, 2N = Te=r/m
r
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Schwarzschild without boundary (Hashimoto et al. '20)

. Area(0Z .
S(R) ~ min {e%(t {# + Smatter (R UI)] } = min {e>z<t Sgen(ra, ta)}
e Entanglement region ( ) is located in both exteriors

R=R_-UR. = (ip,b-]U[by,iR), by ={rste}, b- = {re, — ts}
o Island configuration (magenta) extends between both exteriors

T= [a*vaJr]v ap = {ra» ta}a a_ = {r27 - ta}
@ Evolution is upward in both exteriors with H;,; = H;, + Hg for TFD
o Parameters (r,, t,) of the island Z are determined by extremization

ext Sgen : ara Sgen(r37 ta) =0
o1 81.‘35gen(ran ta) =0
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Schwarzschild without boundary (Hashimoto et al. '20)

page tb

(red)

0o T4 Si(R)~ 2mry n [Iog (16r,‘:'(r,, - rh)2) N rh} (green)

16!‘2 rp — tn > tp Cctp
¥ cosh2 2| ~ &b
E-rp rh | te>rn 6rh

E4I’b 1)

Island rule: at each moment t = t, we need to choose the smallest entropy

Note: Sz(R) ~ SHe™ = 2712 /G only in the approximation ¢G/r2 < 1
(neglect of backreaction), island provides consistent behaviour with unitarity
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Introducing of boundaries

Geometry with a spherically symmetric boundaries:

double-boundary geometry with a boundary at r = ry > ry,
in the left and right exteriors

u V ® We assume thermodynamic
stable equilibrium at all times

® | oss due to Hawking radiation is com -

Left Right [ =70  pensated by reflection from the walls
universe universe

r =

e Quantum state - generalization of TFD

e Schwarzschild with walls - an analogue
of AdS - Schwarzschild?
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BCFT, on upper half-plane

Simplest BCFT, geometry — Euclidean flat upper half-plane (UHP)

N

[

=

K

<

s

bS] boundary
j=X

0 /\J

euclidean time X1

ds® = Xm2 + dX22 =dzdz, z=x1+ix2, x1 € (—00,00), x>0

Here x; is Euclidean time, x, is the spatial coordinate, x» = 0 is boundary
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BCFT, on upper half-plane

@ We consider regions R consisting of union of intervals
R =zs,,25,]U...U][za,, Zb,]

o Entanglement entropy in replica trick framework [Callan, Wilczek '94]

S(R) = —Tr(prlog pr) = — rlqu — log (Tr pi)

where pr = Trg piot, and pror is vacuum state on UHP
o

Tt pf = (9(2ay: 220 )(2by, 2y ) - - - H(Za 22, )0(25,,, Zb,,)) i

The twist operators are primary with h, = h, = c/24(n —1/n) for
bulk and h, = h, = 0 for boundary insertions [Calabrese, Cardy '04]

\ 2
R=R,UR, z
N Example of
% < region
Zb1
Ry
Z/l

1
1 >Y1
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BCFT, of free Dirac fermions

We consider ¢ copies of two-dimensional free massless Dirac fermions
with perfectly reflecting boundary conditions

b.c.
_ [ n1lasx) ) _ (a(2) . A
1/) - ( w;(xi,xi) ) - < w;(z) )v 7/11(X170) —1/)2(X170), X1 € (700,00)
X, B
perfect reflective
] boundary
condition
| >X1

The EE of R = [Zal,Zbl] U...u [Zam, me] [Kruthoff et. al '21, Rottoli et. al '23]

m m
C C
S(R) =5 > loglzs, — 25| ~ 5 D log|z, — 2128, — 25| — mloge

ij=1 i<j

C - _ _ C = _ _
+6 Z log |Za,' - Zaj||zb; - ij' - 6 Z log |Zr3i - ijHZbi - Zaj|
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BCFT, on a curved spacetime

What if the domain and 2) is not flat?

Transform correlators using 1) conformal and transformations

Recall within replica trick the EE is defined by correlator

S(R) = —lim |Og<¢(231, Zal)g(zlh ) 2131) s ¢(23m7 Zam)g(zbma 2bm)>

n—1n—1

e Conformal map, z: Q — UHP, z=12z(w), Zz=2Zz(w)

dz\"
x(¢(z1,21) - . . 9(Zm, Zm)) unp-
o Weyl map (flat — curved), ds? = dw dw — ds?® = e("- ") dw dw
<¢)(W17 Wl) e d)(Wm, V_Vm)>eng = ef2h,,p(w1,v_v1) . ef2h,,p(w,7,v_v,,)

X (P(wi, 1) ... ¢(Wpm, Wm))g

Note: it is entropy on a fixed curved background (the 2,4 term in the island formula)!
18 / 27

(p(wr, 1) ... (W, Wm))a = ﬁ <:/jvz.,>h

j=1



Euclidean Schwarzschild spacetime

Euclidean geometry is needed to apply the BCFT, EE technique =
= let us consider Euclidean Schwarzschild spacetime with boundaries

@ Define the (space-) time-like Kruskal coordinates X, T = (V F U)/2
@ Wick rotate Kruskal T = —i7T and Schwarzschild t = —i7 times
@ Euclidean Schwarzschild does not contain an interior, i.e. r > ry

We introduce a complex coordinates
w=X+IT, w=X-—IiT,

and the Euclidean version of the 2D part of Kruskal metric is

Weyl factor
—-1.,.2 —
dS2 _ er(w,v_v)deW’ e2p(w,v‘v) = 5— W(e I‘ChWW)2 __
2w [1+ W(e 1kiww)]

where W(x) is Lambert W function
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Euclidean double-boundary geometry

e Euclidean double-boundary geometry is the interior of the disc

Knr«(ro)
X2+ T2<13|X,Te[~LoLo]}, Lo="1 .
h
@ Conformal map from disc to UHP is
z= iiL0 tw
a LO - w
T T Im(z)
A
U\A 0 \% LOA

/> —Lo/ \Lo,

/ \X \J ” E
— =0

Wick rotation _LO Conformal map to UHP
_—
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Double-boundary entanglement entropy setup

e Entanglement region (purple) is located in both exteriors
R =R_U R+ = ["Ja b—] U [b+a I’E)L], b+ = {rbv tb}a b_ = {rba - tb}
e Island configuration (green) extends between both exteriors
IZ = [af7a+]v a+ - {ra7 ta}a a_ = {ra7 - ta}
@ Evolution is upward in both exteriors with H;.; = H; + Hg
e Parameters (r,, t;) of the island Z are determined by extremization

ext Sgen : ar,a,Sgen(rav ta) =0
ol atasgen(ra; ta) =0
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Double-boundary: no-island dynamics

e Entanglement entropy with trivial island Z = &
S(R2) = % log <4f(rb) C;’SZZ Wb>+° log ( 2sinh? (1 (r0) — 1 (1)) )

KpE 6 cosh 2kp(r«(ro) — r«(rp)) + cosh 2kptp
o Entropy saturates at t, > t}, t} = r.(r0) — r.(rp) at value

S%t(Ry) = % log <4f(rb) sinh? k4 (e (ro) — r*(rb))>

K2e?
@ There is such ro(rp, ¢) that
o Vro > Fo: S%(R2) > SEiF™

(non-unitary evolution)
o Vro € (rn, 10): S¥(R) < Stherm

(consistent with unitarity)

rm=1,1=5¢=3G=0.1
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Double-boundary: blinking island

The general picture of the island evolution is
o First the island appears and at t} = r.(ro) — r.(r») disappears
o At 2 = r.(r) + 2r.(r,) — 3/2ky log (cGr2e/3m) it appears again
e So, at t, € (t}, t2) island solution near horizon does not exist

There is a "blinking island” in the approximation cGr? < 1

tolink = t5 — tp = 3r.(rp) — 3/2ky log (cGrje/3m) > 0

ro = 200 (“Far” Boundary)
S

100 o thEEEEEEEEEEED

801
L gthemed(pr)

—— Without Island
—— With Island
---- Discontinuity

ty

200 300 400
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Properties of blinking island

e For rp,/2GM = fixed and ¢ = fixed, with M * the time tpjink

r ce
ink = 6GM —1
thlink = 6G <2GM 8 |:48’/TGM2(rb/2GM - 1)])

@ Behavior of island’s parameters (r,, t,) — loss of equilibrium?

rn=1,10=120,¢c=3,G=0.1
rn=11y=120,¢c=3,G=0.1

- t(l
10 (ry — 1)
—— Early time regime _
35 Late time regime
160 - 5\1‘_ (lmu regime P
3.0 W=l -
25
140+
2.0
15 Farly
ol »
1.0 ate time 12 .
05 thlink blink
1 " 1 1 1 tb fl)
100 120 140 160 180 110 120 130 140 150 160 170

@ Thermodynamic stability /instability depends on cavity size ry
[Hawking '76, York '86]. Is there a connection with the "blinking effect”?
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Finite-size effects

o EE of finite-size region [Ageev, Aref’eva, Belokon, Ermakov, Pushkarev, TR '23
PRD arXiv:2209.00036], for dS [Ageev, Aref’eva, Belokon, Pushkarev, TR
arXiv:2304.12351]

S
— Su(Rus) P
1sof — SeAlL Rus]
100 .
sof ! 1 L — Su(R)
; L —smiLR
[l H t’
50 100 150 200 250 k

@ The island disappears = a jump in EE and non-unitary evolution

Finite-size effects (IR regularization) lead to the problems with island?

What is the reason: massive graviton [Geng, Karch '20], thermodynamic

instability, inapplicability of s-mode, ... 7 Direction of further research
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Conclusions

@ We considered the dynamics of the entanglement entropy within
island prescription for Hawking radiation in the generalization of the
two-sided Schwarzschild black hole by introducing reflective
boundaries

© We showed a universal effect induced by the boundary presence,
which we call “blinking” island — the disappearance of the island for
a finite time interval, that for large cavity leads to non-unitary
evolution

© While for small sizes of cavity there is an evolution consistent with
unitarity even without considering the island configuration
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