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Big Picture Motivation

▶ Our universe approaches de Sitter spacetime.
▶ For a static observer, de Sitter spacetime contains

causally disconnected regions separated by
cosmological horizon.

▶ Cosmological and black hole horizons share
similar properties: temperature, entropy,
Hawking radiation.

▶ However, cosmological horizon is
observer-dependent, in contrast to black hole
geometry. Microscopic interpretation of the
cosmological horizon is not clear.



Big Picture Motivation

The microscopics of cosmological horizon
thermodynamics could potentially rely on
holography. For example, the gravitational
fine-grained entropy (for AdS black hole) was first
derived via AdSd+1/CFTd correspondence
(Ryu-Takayanagi formula). However, the de Sitter
holography is still a subject to debate (known
examples are dS/CFT correspondence, different
versions of static patch holography — worldline
holography, stretched horizon holography).



Big Picture Motivation
▶ Much of a progress has been achieved in deriving

gravitational fine-grained entropy in black hole
backgrounds by performing calculations using
semi-classical gravitational path integral.

Рис.: Two different saddles in n = 2 Euclidean gravitational path integral in the
presence of gravity in the shaded region. On the left is the Hawking saddle, on
the right — the replica wormhole where gravity dynamically glues together the
shaded regions. Replica wormholes reproduce the island rule.



Big Picture Motivation

▶ Non-trivial saddle points in the path integral (the
so-called replica wormholes) define the
gravitational von Neumann entropy
(QES/island rule).

▶ The island rule is a non-perturbative effect.
▶ The original derivation of the island rule for AdS2

black hole relies on the fact that the full manifold
ℳ ≃ AdS2 ∪M2. The AdS2 is dynamical gravity,
while Minkowski bath M2 realizes the
asymptotically flat b.c. The “radiation”
(CFT2) is collected in M2. This allows to consider
a replica manifold and use the replica trick.



Big Picture Motivation

▶ In dS, event horizon lies between the static
observer and the null infinity.

▶ Therefore, there is no unambiguous way to couple
the thermal bath in dS.

▶ Even if the bath is coupled to asymptotic infinity,
the Euclidean gravitational path integral will not
obtain the corresponding contribution, since only
the static patch survives in Euclidean signature.

▶ Therefore, for dS the problem does not have a
solution neither from holography nor from replica
calculation.



Entropy In The Presence Of Gravity
The “island rule” for entanglement entropy of QFT in
gravitational systems reads

S(R) ≃ minℐ

{︂
extℐ

[︂
Area(𝜕ℐ)

4GN
+ Sm(R ∪ ℐ)

]︂}︂
, (1)

where
▶ Σ ≃ R ∪ R is the Cauchy surface, on which the state of

QFT is defined;
▶ R is the region of interest, the entropy of which we aim to

calculate;
▶ ℐ — the “island” defined by extremization, 𝜕ℐ — its

boundary;
▶ Sm — entanglement entropy of QFT on the fixed classical

background.



Purity And Complementarity Of Entanglement
Entropy

▶ Let the total system 𝜌tot consist of two subsystems: A∪B .
The Hilbert space of the total system ℋtot is given by

ℋtot ≃ ℋA ⊗ℋB . (2)

▶ The reduced density matrices of the subsystems are
defined as

𝜌A = Tr ℋB
𝜌tot , 𝜌B = Tr ℋA

𝜌tot . (3)



Purity And Complementarity Of Entanglement
Entropy

▶ Entanglement entropy of a subsystem X is
defined as

SX = −Tr 𝜌X log 𝜌X , X = A,B . (4)

▶ Basic properties of entanglement entropy of
interest:
▶ Purity: if the system X is in a pure state, then

𝜌2
X = 𝜌X , therefore, SX = 0.

▶ Complementarity: if the total state X ∪ X is pure,
then entanglement entropies of the subsystem X and
its complement X are the same: SX = SX .

▶ Araki-Lieb triangle inequality: |SA − SB | ≤ SA∪B .
▶ SX ≤ SGH(X ) ∝ Area(X ).



Setup
The metric of dS4 is given by

ds2 = −f (r)dt2 +
dr 2

f (r)
+ r 2dΩ2

2, f (r) = 1 − r 2

ℓ2
(5)

The radial distance d2(x, y) between two points can be
calculated as

d2(x, y) =
2
√︀

f (x)f (y)

𝜅2
c

[︀
cosh𝜅c(r*(x)−r*(y))−cosh𝜅c(tx−ty )

]︀
(6)

where 𝜅c = 1/ℓ is surface gravity, and the tortoise
coordinate r*(r) is

r*(r) =
ℓ

2
log

ℓ+ r

|ℓ− r |
=

{︂
ℓ arctanh r/ℓ, r < ℓ,
ℓ arctanh ℓ/r , r > ℓ.

(7)



Setup

▶ We use partial reduction from d = 4 to d = 2.
▶ We add matter represented by c free massless

Dirac fermions:
𝒮pure dS4 → 𝒮partially reduced dS2 + 𝒮CFT2 fermions.

▶ Entropy of conformal matter for one interval

Sm =
c

6
log

d2(x, y)
𝜀2 . (8)

▶ Entropy of N intervals is given by

Sm = c
6

∑︀
i , j

log
d2(xi ,yj)

𝜀2 − c
6

∑︀
i < j

log
d2(xi ,xj)

𝜀2 − (9)

−c
6

∑︀
i < j

log
d2(yi ,yj)

𝜀2 . (10)



Main Results



Main Results

▶ Cauchy surfaces Σ are finite-sized, hence, do not need IR
regularization.

▶ Sm(Σ) ≥
c

3
log

2
𝜅c𝜀

. This result is in contradiction

with pure state condition: Sm(Σ) = 0.
▶ Entropies for a finite interval and its complement are

Sm(R) =
c

6
log

(︃
2
√︀
f (b)

𝜅2
c𝜀

2 [cosh𝜅cr*(b)− cosh𝜅c(tb − t0+)]

)︃
(11)

Sm
(︀
R
)︀
=

c

6
log

(︃
2
√︀

f (b)

𝜅2
c𝜀

2

[︀
cosh𝜅cr*(b)+ cosh𝜅c(tb − t0−)

]︀)︃
(12)

Therefore, complementarity is explicitly violated:
Sm(R) ̸= Sm

(︀
R
)︀
.



Main Results

Consider the finite region R = [b+,0+].
▶ If 𝜅c(tb − t0+) = const, then S(R) = const, and

S(R) ≤ SGH.
▶ Let 𝜅c(tb − t0+) ≡ g(tb) ̸= const. Then

▶ If g ′(tb) > 0, then Cauchy surface breaks,
S(R) → ∞, and the problem becomes
ill-defined.

▶ If g ′(tb) < 0, the endpoints b+ and 0+

asymptotically approach the hypersurface of
constant time at late times, and
S(R) → const.



Main Results
Consider R = [0−, b−] ∪ [b+ 0+] with tb+ = −tb− ≡ tb,
t0+ = tb+ , t0− = tb− .



Main Results

▶ At early times tb ≪ r*(b)/2, the entropy monotonically
increases

Sm (R) ≃ 2c
3
𝜅ctb + const

▶ At late times tb ≫ r*(b)/2, the entropy saturates at the
value

Sm (R) ≃ c

3
log

(︃
2
√︀
f (b)

𝜅2
c𝜀

2

)︃
+

c

3
log (cosh𝜅cr*(b)− 1)

▶ lim
b→ ℓ

r*(b) → ∞ =⇒ as b → ℓ, the linear growth regime

gets longer. This might formally lead to the
information paradox in dS.

▶ Numerical analysis reveals no island for this configuration.



Conclusions

▶ As a consistency test of the setup, we studied
basic properties of entanglement entropy for a
pure state in dS. Both pure state condition
and complementarity are violated. This
disproves CFT2 formulas for entanglement
entropy to partially reduced dS geometry.

▶ We have given an example in this setup, which
might potentially lead to the information
paradox. Numerical calculations reveal no
non-trivial island for this configuration. The
possible information paradox cannot be
resolved by the island formula.



Thank you for your attention!
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