# Annihilation of positrons from AGN jets as a possible source of cosmic soft gamma-ray background

Quarks XXII 20.05.2024 arXiv:2303.03526 arXiv:2403.08427 M.S. Pshirkov<sup>1,2</sup>, B.A. Nizamov<sup>1</sup> <sup>1</sup>Sternberg Astronomical Institute <sup>2</sup>INR RAS

#### **Papers**

- B.A. Nizamov, M.S. Pshirkov, "Can Observations of 511 keV Line from the M31 Galaxy Shed Light on the AGN Jet Composition?", arXiv:2303.0352
- B.A. Nizamov, M.S. Pshirkov, "Annihilation of positrons from AGN jets as a possible source of cosmic gamma-ray background at energies below 511 keV", arXiv:2403.0827

#### **AGN: unified model**

• Matter is accreted on SMBH, releasing vast amount of energy: AGNs and relativistic jets are launched

• The Unified Model of AGNs: a supermassive black hole surrounded by a torus of dust. AGNs appear different because of their different oriention wrt. the line of sight.



# **AGN: unified model**

- Non-aligned AGNs -- we can observe radiation from both the accretion disk and the jet (sometimes from the host galaxy as well)
- Jet -- bulk relativistic motion,  $\Gamma$ ~10
- Extreme relativistic beaming for the aligned AGNs-*blazars*. The jet dominates over all other sources of the radiation



#### AGN jets: spectrum

- Two peaks: LE from synchrotron. HE -- ?
- Leptonic models -- IC
- Hadronic -- proton synchrotron/photo-pion



Bottcher et al, 2013





#### **AGN jets: components**

- We can be sure that there are electrons (from the first peak)
- +Protons: restore electroneutrality
- Could be also some contribution from  $e^+e^-$  pairs

#### **AGNs: energetis**

- Accretion luminosity,  $L = \epsilon \dot{M}_{\rm acc} c^2$ ,  $\epsilon \sim 0.1$
- Kinetic power of the jet,  $P_{jet}$
- Several different methods to estimate the latter, some of them give  $P_{jet} > M_{acc}c^2$ !
- Other more modest,  $P_{\text{jet}}/\dot{M}_{\text{acc}}c^2 \sim (0.01-0.1)$



Ghisellini et al, 2014

## **AGNs:** pairs

• We can reconcile, adding 10-20 pairs for each proton.

• Also polarizational observations of jets are in line with presence of positrons.

• Jets are still energetically dominated by proton bulk motion, but numerically the protons are marginal constituent.

- Helps to lower needed jet energetics.
- Bottom line: we expect considerable amount of pairs to exist in the jets. They could have been originally created near the SMBH in the collisions of ~MeV photons.

**Positrons: possible observational consequences** 

- Positrons eventually leave the jet
- They stay in the circum-galactic medium (CGM) of the galaxy (<100 kpc) and continuously annihilate there with tenuous CGM

• We could potentially observe 511 keV line + softgamma ray continuum from 3-photon annihilation

• Caveat: we don't know fraction of positrons leaving the halo for good

#### CGM

- Gas halo around the galaxy
- Inflow from the IGM, outflows to IGM -- baryon cycle



*Tumlinson et al, 2017* 

#### CGM

- CGM is a complex multi-phase structure:
  - denser colder regions ( $T=10^5$  K)
  - diluted hot regions ( $T=10^6$  K)
  - Characteristic density:  $n \sim 10^{-4} \text{ cm}^{-3}$



## **Positron production**

- As we have seen in the *Energetics* section, the jet power is tightly coupled to the accretion rate
- Assuming that  $n_e = n_p$  (i.e., no positrons)

$$P_{\rm j} = \eta \dot{M}_{\rm acc} c^2 \quad , \eta \sim 1$$

- If  $n_{\text{pair}} \neq 0$ , this power is reduced  $P_{j} = \eta \dot{M}_{\text{acc}} c^{2}/2n_{\text{pair}}$
- On the other hand,  $P_j = \dot{N}_p \Gamma m_p c^2$ , kinetic energy of proton bulk motion dominates
- We're interested in the positron production rate

$$\dot{N}_{+} = n_{\text{pair}} \dot{N}_{\text{p}} \qquad \qquad \dot{N}_{+} = \frac{\eta \dot{M}_{\text{acc}}}{2\Gamma m_{\text{p}}}$$

- Does not depend on  $n_{\text{pair}}!$  (If  $n_{\text{pair}} \sim (10-20)$ ).
- Flux roughly proportional to  $\dot{M}_{\text{SMBH}}/d^2$ . Sgr A\*, M31, Cen A. The best candidate is M31.

#### **Positron production**

- We don't know accretion history  $\dot{M}_{acc}(t)$  for any particular SMBH  $\rightarrow$  we need mean evolution instead
- Could be obtained from the luminosity functions at different redshifts. e.g. X-ray LFs (*Ueda et al, 2003*)
- Accretion tracks the X-ray luminosity



#### **Positron production**

• We normalize the rate, using the known present day SMBH mass ( $10^8 M_{\odot}$ )



*Left*: Average growth rate of an SMBH with the initial mass  $1.56 \times 104$  Msol. On the right axis is shown the corresponding average AGN bolometric luminosity. *Right*: Growth history for SMBHs of various initial masses calculated by method of Marconi et al. (2004). The track used in the calculations is shown in bold.

#### **Positron thermalization**

- We need to know accumulated number of positrons in order to get the luminosity,  $L(t) \sim N_+(t)$ .
- Positrons could effectively annihilate only when "in rest", i.e. thermalized, due to the strong velocity dependence of the cross-section
- How to slow down initially relativistic particles ( $\Gamma$ )?
- Two ways:
  - Coulomb collisions (slow):

 $t_{\rm br} = (\Gamma - 1)mc^2 \left\{ 7.7 \times 10^{-9} \frac{n}{\beta} \left[ \ln\left(\frac{\Gamma}{n}\right) + 73.6 \right] \right\}^{-1} \approx 2.2(\Gamma/10)(n/10^{-4} \text{ cm}^{-3})^{-1} \text{ Gyr.}$ 

• Adiabatic losses (fast):

 $t_{\rm ad} \sim r_{\rm halo}/v_{\rm wind}$ ,  $r_{\rm halo} = 50$  kpc,  $v_{\rm wind} = 300$  km/s  $t_{\rm ad} \sim 200$  Myr.

• Real  $t_{ad} < t_{br} < t_{coul}$ , could be approximated as  $0 < t_{br} < t_{coul}$ 

### **Positron annihilation**

• Thermalized photons could annihilate either directly, or through formation of the bound state, so-called *positronium*, Ps



• Cross-sections and characteristic times has different  $n_{\rm e}$ -dependences:

 $t_{\rm d} \approx 20 \times (T/10^6 {\rm K})^{0.5} (n/10^{-4} {\rm cm}^{-3})^{-1} {\rm Gyr}$  $t_{\rm r} \approx 27 \times (T/10^6 {\rm K})^{1.1} (n/10^{-4} {\rm cm}^{-3})^{-1} {\rm Gyr}$ 

#### **Positron annihilation**

- Ps comes in two kinds. Singlet, with parallel spins, *para-positronium*, p-Ps. Triplet, with antiparallel spins, *ortho-positronium*, o-Ps.
- Branching ratio for Ps formation -- 1/4 for p-Ps, 3/4 for o-Ps.
- p-Ps annihilates in 2 photons, E=511 keV in 10<sup>-10</sup> s. o-Ps lives longer, 10<sup>-7</sup> s and decays into three photons, forming a continuum



#### **Positron annihilation**

• Number of thermalized positrons could be calculated from the following equation:



halo of M31.

## 511 keV line flux

- The flux at the Earth is:  $F = \frac{2nN_+(t_e)(\langle \sigma_a v \rangle + \frac{1}{4} \langle \sigma_r v \rangle)}{4\pi d^2}$
- For the halo parameters  $n = 10^{-4} \text{ cm}^{-3}$ ,  $T = 10^{6} \text{ K}$ , we obtain  $F = 2.5 \times 10^{-4} \text{ photon cm}^{-2} \text{ s}^{-1}$ .
- For different values of T and  $\Gamma$ :

| <i>Т</i> , Қ | Γ                    |                     |                      |
|--------------|----------------------|---------------------|----------------------|
|              | 5                    | 10                  | 20                   |
| $10^{6}$     | $4.6 	imes 10^{-4}$  | $2.5 	imes 10^{-4}$ | $1.5 	imes 10^{-4}$  |
| $10^{5}$     | $1.1 \times 10^{-4}$ | $8.7 	imes 10^{-5}$ | $1.1 \times 10^{-4}$ |

- Close to present-day ULs from *INTEGRAL*,  $10^{-4}$  ph cm<sup>-2</sup> s<sup>-1</sup> obtained for a point-source M31.
- Near future missions, e.g. *COSI* will check.

- Whole population of AGNs in the Universe could contribute to the observed extragalactic diffuse gamma-ray background
- 511 keV line would be redshifted. Also we now take into account 3-photon annihilation of o-Ps.
- Production rate could be directly extracted from the AGN luminosity function  $\phi(L, t)$ :

$$\dot{N}_{+}(t) = \frac{\eta \int L\phi(L,t)d\log L}{2\epsilon c^{2}\Gamma m_{\rm p}}$$

• Number evolution

$$\frac{dN_{+}(t)}{dt} = \dot{N}_{+}(t - t_{\rm br}) - nN_{+}(t)(\langle \sigma_{\rm a}v \rangle + \langle \sigma_{\rm r}v \rangle)$$



The mean comoving number density of positrons.

- Comoving producton rates of 2- and 3-photons:  $\varepsilon_{2\text{phot}}(z) = 2nN_{+}(z)\left(\langle \sigma_{a}v \rangle + \frac{1}{4}\langle \sigma_{r}v \rangle\right)$   $\varepsilon_{3\text{phot}}(z) = \frac{3}{4}nN_{+}(z)\langle \sigma_{r}v \rangle$
- It is possible to obtain the radiation intensity of the sources with a known redshift distribution.

$$I_{\mathcal{E}} = \frac{c}{4\pi H_0} \int \frac{L[(1+z)\mathcal{E}, z]dz}{(1+z)E(z)}$$
$$E(z) = \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}$$

- In the case of two photon annihilation radiation, the luminosity is monochromatic and equals
   L(ε, z) = ε<sub>0</sub>ε<sub>2phot</sub>(z)δ(ε ε<sub>0</sub>)
- 3-photons:  $L(\mathcal{E}, z) = \mathcal{E}\varepsilon_{3\text{phot}}(z)\varphi(\mathcal{E})$ ,  $\varphi(\mathcal{E})$  --decay spectrum



*Diffuse GRB spectrum. The observation data are HEAO-1 A4, Swift-BAT, SMM . The model curves represent the contribution from AGNs (Gilli+2007) and FSRQs (Ajello+2009) and (Ajello+2012) . Our estimations from AGNs and SNe Ia are also shown.* 

## Conclusions

- AGN jets are a viable source of positrons in the Universe.
- If they are produced in AGN jets and are trapped in galactic gaseous halos, they can survive for substantial amount of time
- We found that for a reasonable parameter combination, the present 511 keV photon flux at Earth from M31 can be as high as few times 10<sup>-4</sup> cm<sup>-2</sup> s<sup>-1</sup> and can be potentially observed in the near future
- The possible annihilation component from the population of AGNs could make a subdominant contribution, providing up to  $\sim 20\%$  of the total EDGRB in the 400–500 keV range

# Thank you!

The work of the authors was supported by the Ministry of Science and Higher Education of Russian Federation under the contract 075-15-2024-541 in the framework of the Large Scientific Projects program within the national project "Science".