Sub-GeV dark matter and high-energy neutrino production

Polina Kivokurtseva

I IN IX Institute for Nuclear Research of the Russian Academy of Sciences

Physics Department Lomonosov Moscow State University

Quarks-2024 Pereslavl, 20 May 2024

Can dark matter contribute to neutrino production?

- Active galactic nuclei (AGN) are promising sources of high-energy neutrinos
- In the center of AGN supermassive black hole (SMBH) is located

3/18

Dark matter spike

If dark matter is present at the galactic center, as in current models of the dark halo, it is redistributed by the black hole into a cusp.

Dark matter spike of NGC 1068

Constrains on DM annihilation can arise not only from astroparticle physics but also from cosmology and detection of gravitational waves.

Luque et. al. 2024

SPI data from INTEGRAL

 $\langle \sigma v \rangle \approx 10^{-32} cm^3 s^{-1}$ at masses of around an MeV $\langle \sigma v \rangle \approx 10^{-26} cm^3 s^{-1}$ at masses of over several GeV

Neutrino signal from NGC 1068

IceCube

Significance of 4.2 σ Neutrinos in an energy range from 1.5 TeV to 15 TeV $L_{\nu} = (2.9 + 1.1_{stat}) \cdot 10^{42} erg/s$ Multi-messenger data suggest that the neutrino emission radius R is smaller than \approx 30 - 100 Schwartzschild radius

Any dark matter model may be deconstructed into three sectors: the SM, the DM, and the fields that mediate the DM's interactions with the SM.

$$L = L_{SM} + L_{DM} + L_{mediator} \tag{1}$$

- Kinetic mixing portal
- e Higgs portal

Sub-Gev dark matter in this work - 20 MeV - 1 GeV

三日 のへの

Neutrino production

三日 のへの

Dark matter annihilation

Polina Kivokurtseva (INR RAS & MSU)

Sub-GeV dark matter and neutrino

To get number dencity of electrons and positrons we need to solve the standart diffusion-loss differential equation

$$\frac{\partial f}{\partial t} - \nabla(K(E, r)\nabla f) - \frac{\partial}{\partial E}(b(E, r)f) = Q(E, r)$$
(2)

where $f = \frac{n_e}{4\pi p^2}$ and for DM annihilation

$$Q_e = \frac{1}{2} \left(\frac{\rho}{M_{DM}}\right)^2 \langle \sigma v \rangle \frac{dN_e}{dE}$$
(3)

Target-photons

We do not know proton luminosity of the source. To check the model we take values of

- $L_{Edd} \approx 10^{45} erg \cdot s^{-1}$
- 100*L_{Edd}*
- 500*L_{Edd}*

Numerical calculation of neutrino flux

Future

- AMEGO, expected in 2026-2028
- COSI, expected in 2027
- e-ASTROGRAM, expected in 2029

- Dark matter can contribute to the flux of astrophysical neutrinos.
- Future work examining the spectra of neutrinos from dark matter annihilation may help identify a dark matter-related feature in the spectra from galactic nuclei

Thank you!

This work is supported in the framework of the State project "Science" by the Ministry of Science and Higher Education of the Russian Federation under the contract 075-15-2024-541.

Appendix: kinnetik mixing

$$\mathcal{L}_{\text{Int}(S)} = -S\left(g_{S\chi} + g_{Sf}\sum_{f}\frac{y_{f}}{\sqrt{2}}\bar{f}f\right) + \frac{S}{\Lambda}\left(g_{SG}\frac{\alpha_{\text{EM}}}{4\pi}F_{\mu\nu}F^{\mu\nu} + g_{SF}\frac{\alpha_{s}}{4\pi}G^{a}_{\mu\nu}G^{a\mu\nu}\right)$$
(4)

< 47 ▶

$$\mathcal{L}_{\text{Int}(V)} = V_{\mu} \left(g_{V\chi} \bar{\chi} \gamma^{\mu} \chi + \sum_{f} g_{Vf} \bar{f} \gamma^{\mu} f \right) - \frac{\epsilon}{2} V^{\mu\nu} F_{\mu\nu}.$$
(5)

- ∢ /⊐ >

Numerical calculation of electron spectra

