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Setup
The background metric (dΩ2 = d𝜃2 + cos2 𝜃d𝜙2)

ds2 =

⎧⎨⎩ dt−
2 − dr2 − r2dΩ2, r ≤ R(t)(︀

1 − rg
r

)︀
dt2 − dr2

1− rg
r

− r2dΩ2, r ≥ R(t)
,

The radius of the spherical shell

R(t) =

⎧⎨⎩ R0, t ≤ 0

rg
(︁
1 +

R0−rg
rg

e
− t

rg

)︁
, t → +∞

,

The time

t− =

⎧⎨⎩
√︁

1 − rg
R0

t, t ≤ 0

R0−rg
𝜈

(︁
1 − e

− t
rg

)︁
, t → +∞

; 𝜈 =

⃒⃒⃒⃒
dR(t−)

dt−

⃒⃒⃒⃒
2 / 15



Setup

Figure: The collapse of a massive, thin shell in tortoise coordinates,
R*(t) = R(t) + rg log

(︁
R(t)
rg

− 1
)︁
. We divide the collapse into three

phases: I, II and III
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Setup

We consider massive scalar field theory on such a background

S =

∫︁
d4x

√︀
|g |

[︂
(𝜕𝜇𝜑)

2 −m2𝜑2 − 𝜆

4!
𝜑4

]︂
.

EOM for the free modes in the collapse background

⎧⎨⎩
[︁
𝜕2
t− − 𝜕2

r +m2 + l(l+1)
r2

]︁
(rhl) = 0, r ≤ R(t)[︁

𝜕2
t − 𝜕2

r* +
(︀
1 − rg

r

)︀ (︁
m2 + l(l+1)

r2
+

rg
r3

)︁]︁
(rhl) = 0, r ≥ R(t)

,

Spherical decomposition and the boundary conditions

𝜑 (t, r , 𝜃, 𝜙) =
∑︁
l ,n

Yl ,n (𝜃, 𝜙) hl (t, r) ,

hl

[︁
R(t)−0

]︁
= hl

[︁
R(t)+0

]︁
, 𝜕nhl

[︁
R(t)−0

]︁
= 𝜕nhl

[︁
R(t)+0

]︁
,
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Setup

The free Hamiltonian depends on time

H0(t) =
∑︁
l

(2l + 1)
∫︁ ∞

0
dr

√︀
|g |

sin(𝜃)
×

×

[︃
g tt (𝜕thl)

2 − 1√︀
|g |

hl𝜕t
(︁√︀

|g |g tt𝜕thl

)︁]︃
.

But the Hamiltonian is time independent before the start of
the collapse and becomes time independent at the very final
stage of the collapse.
Hence, the free Hamiltonian can be diagonalized at past and
future infinity by different modes. Before the start of the
collapse it can be diagonalized by the in-modes, while at the
future infinity — by the out-modes. That is the hint for the
presence of the particle creation.
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The problem to address

We want to calculate the stress-energy flux at future infinity in
the vicinity of the horizon for the in-ground initial state

J =

∫︁
S2

d2Ω

⟨
in

⃒⃒⃒⃒
: T

r
t (r ≈ rg , t → +∞) :

⃒⃒⃒⃒
in

⟩
The in-modes and the corresponding Fock space ground state
are defined as

𝜑 (x) =
∑︁
l ,n

Yl ,n(𝜃, 𝜙)

∫︁ ∞

m

d𝜔

2𝜋

[︂
a𝜔,l ,nh̄𝜔,l(r , t) + h.c.

]︂
,

a𝜔,l ,n |in⟩ = 0
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The behaviour of the in-modes
Inside the shell (r ≤ R0) before the collapse (t ≤ 0)

h̄𝜔,l(t, r) =
𝒜𝜔√
r
Jl+ 1

2

(︁√︀
𝜔−2 −m2 r

)︁
e−i 𝜔− t− , 𝜔− =

𝜔√︁
1 − rg

R0

;

Outside the shell, before the collapse (k =
√
𝜔2 −m2)

h̄𝜔,l(t, r) =
e−i 𝜔 t

r

{︃
A𝜔e

−i𝜔r* + B𝜔e
i𝜔r* , |r − R0| ≪ rg ,

C𝜔 e−ikr* + D𝜔 e ikr* , r ≫ R0,
,

Just outside the shell (|r − R0| ≪ rg ) at the future infinity
(t → +∞) (u = t − r*, v = t + r*)

r h̄𝜔,l(r , t) ≈
√︀

𝜋 R(u)Jl+ 1
2

[︁√︀
𝜔−2 −m2 R(u)

]︁
×

× exp

{︂
−i𝜔−

(R0 − rg )

𝜈

(︂
1 − e

− u+R*
0+rg−R0
2rg

)︂}︂
+ A𝜔 e−i 𝜔 v
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The tree-level flux

The flux at future infinity near the shell is defined as

J (r ≈ rg , t → +∞) =
+∞∑︁
l=0

(2l + 1)
(︁
J
(l)
u − J

(l)
v

)︁
,

Due to the amplification of the zero point fluctuations one
obtains the seminal Hawking radiation

J
(l)
u − J

(l)
v ≈

(︂
1 − rg

R0

)︂ 1
2
∫︁ ∞

m

d𝜔

2𝜋
𝜔 n(𝜔), n(𝜔) =

1
e4𝜋rg𝜔 − 1

.

Interestingly enough, if one cuts out UV modes (𝜔 → ∞),
then the Hawking flux abruptly drops off after sime time.
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Tree-level vs. loop contributions to the flux
The flux was found from the Keldysh propagator

T r
t = 𝜕r1𝜕t2 DK (1, 2)

⃒⃒⃒
1=2

=
1
2
𝜕r1𝜕t2

⟨{︁
𝜑(x1) , 𝜑(x2)

}︁⟩⃒⃒⃒
x1=x2

The Keldysh propagator for a generic state is

DK (1, 2) ≈
∑︁

l1,n1,l2,n2

Yl1,n1(Ω1)Yl2,n2(Ω2)

∫︁
d𝜔1

2𝜋
d𝜔2

2𝜋
×

×

{︃[︃
N12 + 𝛿l1l2 𝛿n1n2 𝛿(𝜔1 − 𝜔2)

]︃
h̄*𝜔1,l1(t1, r1) h̄𝜔2,l2(t2, r2) +

+K12 h̄𝜔1,l1(t1, r1) h̄𝜔2,l2(t2, r2) + h.c.

}︃
For the in-state at tree level N12 = ⟨a+1 a2⟩ = 0,
K12 = ⟨a1 a2⟩ = 0. The flux was due to zero point
fluctuations.
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The effect on the flux due to loop corrections

In the interaction picture at tree-level the
“level-populations”,N, and “anomalous averages”,K , always
remain zero:

N12 = ⟨a+𝜔1,l1,n1
a𝜔2,l2,n2⟩ = 0, K12 = ⟨a𝜔1,l1,n1 a𝜔2,l2,n2⟩ = 0

In the loops they start to depend on time. E.g.:

N12 = ⟨in|S+(t2, t0)a
+
𝜔1,l1,n1

S(t2, t1) a𝜔2,l2,n2S(t1, t0)|in⟩

In the high energy physics (describing scattering of particles in the
vacuum) “level-population” and “anomalous average” are always
zero. That is in accordance with the Poincare symmetry. There is
no any Poincare symmetry in strong background fields.
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Secular growth
E.g. the leading contribution to the level population in the
future infinity, when t = (t1 + t2)/2 ≫ |t1 − t2|

N𝜔,l ,n|𝜔′,l ′,n′(t) ∼ 𝜆2 t
F (l , n|l ′, n′)√

𝜔 𝜔′
×

×
∫︁ ∞

−∞
d𝜏

∫︁ ∞

rg

r2
3dr3

∫︁ ∞

rg

r2
4dr4

3∏︁
j=1

∫︁
𝜔j>m

d𝜔j

4𝜋𝜔j
×

×
{︁[︁

n(−𝜔j) e
−i𝜔j (𝜏−Δr) + n(𝜔j) e

i𝜔j (𝜏−Δr)
]︁
+ e−i𝜔j (𝜏+Δr)

}︁
,

where Δr = r3 − r4 and factor F (l , n|l ′, n′) is constructed from
spherical harmonics and appears instead of delta-functions
establishing momentum conservation. Similar expression
appears for anomalous average K .
The right hand side here is essentially nothing but the collision
integral in the situation when there is no energy conservation
due to the time dependence of the background metric.

11 / 15



Loop corrections to the Hawking radiation
The presence of N and K means the modification of the Hawking
flux. In fact, in the case when K = 0 and N ̸= 0 the equation for
the flux is as follows:

Ju ≈
∑︁
l ,n

∫︁∫︁ ∞

m

d𝜔1 d𝜔2

(2𝜋)2

∫︁
|𝜔′|>m

d𝜔′

2𝜋

∫︁
|𝜔′′|>m

d𝜔′′

2𝜋

√︀
|𝜔′ 𝜔′′|

𝛼(𝜔1, 𝜔
′)𝛼*(𝜔2, 𝜔

′′)
⟨{︁

a†𝜔1,l ,n
, a𝜔2,l ,n

}︁⟩
e−i (𝜔′−𝜔′′) u.

The standard factor appearing in the calculations of the Hawking

radiation |𝛼 (𝜔, 𝜔′) | ∼ rg

√︁
|𝜔′|
𝜔 cos

[︁
𝜋 (l+1)

2 − 𝜔−rg
]︁
|Γ(−2i𝜔′rg )|.

It is not hard to also restore the contribution of K . Now because of
the loop corrections we have that

⟨{︁
a†𝜔1,l ,n

, a𝜔2,l ,n

}︁⟩
= 𝛿(𝜔1 − 𝜔2) + 2N𝜔1,l ,n|𝜔2,l ,n(t).
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Physical consequences

After long enough time loop corrections become comparable to
the tree-level contribution: N,K ∼ 𝜆2 t e−4𝜋 rg m ∼ 1;
Of course this effect, as well the Hawking effect, is visible for
microscopic black holes;
If the effect is there one has to resum leading corrections from
all loops. The result of the resumation would depends on the
initial conditions;
To do the resummation one has to solve an analog of the
kinetic equations for N and K ;
Even if the result of the resumation leads to a stationary state,
still N and K carry all information about the state of QFT.
That has something to do with the information paradox;
Possibility for the violation of the Ehrenfest theorems. Namely
after the resumation N and K can in principle blow up in finite
proper time. Quantum corrections become stronger than
classical contributions.
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Other non-stationary backgrounds

We observe similar secular effects in the stress-energy flux and
electric currents in other strong background fields. E.g.:

FRW expanding and contracting universes, including de Sitter
space-time;
Strong electric fields. Both constant field and electric pulse;
Dynamical Casimir effect due to the moving mirrors;
Strong scalar field background

Strong background fields are more similar to the condensed matter
physics rather than to high energy particle physics.
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Conclusions

In accelerators one pumps out vacuum and scatters single particles.
That is the reason to consider stationary Poincare invariant
correlation functions to construct amplitudes and cross-sections. In
the very early universe and in the background of collapsing
microscopic black holes there is no reason to assume the state to
be vacuum or even thermal.

THANKS!
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