Holography for Heavy-Ions Collisions

I.Aref'eva

Steklov Mathematical Institute

Quarks-2024

The 22nd conference on high-energy physics Pereslavl 19-24 May 2024

I.Aref'eva

Holography for Heavy-Ions Collisions

20 May 2024, Quarks2024 0 / 33

Outlook

- Physical picture of the formation of quark-gluon plasma in collisions of heavy ions.
- Results of applying the holographic approach to the description of collisions between heavy ions and quark-gluon plasma:
 - Explanation of experimental data:
 - multiplicity of particles.
 - Prediction of new effects in anisotropic quark-gluon plasma:
 - smeared of the confinement/deconfinement phase transition;
 - dependence on the anisotropy parameter and the chemical potential of the energy losses, quenching coefficient of jets, direct photons emission rate, etc.
 - New in the last years
 - More detailed structure of phase transitions
 - Behavior of physical quantities near 1-st order phase transition
 - Automodel behaviour of the QCD running coupling near 1-st order phase transition

I.A

イロト イボト イモト イモト 三日

Evolution during heavy ion collision

- QGP is a state of matter of free quarks, antiquarks and gluons at high temperature. QGP was discovered at RHIC in 2005.
- QGP behaves (RHIC, LHC) like a strongly interacting fluid (collective effects)

20 May 2024, Quarks2024 2 / 33

・ロト ・ 同ト ・ ヨト ・ ヨト

QGP - strongly interacting liquid

• Two questions:

• How was it formed?

2 What properties does it have?

• The main property is the structure of the phase diagram

QCD Phase Diagram: Early Conjecture

Cabibbo and Parisi, 1975

• μ a measure of the imbalance between quarks and antiquarks in the system

		・ロト ・四ト ・ヨト ・ヨト - ヨ	$\mathcal{O}\mathcal{Q}$
Aref'eva	Holography for Heavy-Ions Collisions	20 May 2024, Quarks2024	3 / 33

QCD Phase Diagram: Early Conjecture

イロト イポト イヨト イヨト 二日

3 / 33

I.Aref'eva	Holography for Heavy-Ions Collisions	20 May 2024,	Quarks2024

QCD Phase Diagram: Experiments

- LHC, RHIC (2005);
- FAIR (Facility for Antiproton and Ion Research),

NICA (Nuclotron-based Ion Collider fAcility)

Main goals

- search for signs of the phase transition between hadronic matter and QGP;
- search for new phases of baryonic matter

QCD Phase Diagram: Lattice

Columbia plot Brown et al., PRL (1990)

Philipsen, Pinke, PRD (2016)

20 May 2024, Quarks2024 4 / 33

"Heavy" and "light" quarks from Columbia plot

Light quarks

Heavy quarks

		《曰》《圖》《言》《言》 言	500
I.Aref'eva	Holography for Heavy-Ions Collisions	20 May 2024, Quarks2024	5 / 33

"Light" and "Heavy" quarks phase diagrams from scattering amplitudes

light quarks and heavy quarks

1	Ι.	1	4	r	e	f	e	v	a	

20 May 2024, Quarks2024 6 / 33

A (10) × (10) × (10)

The expected more detailed QCD phase diagram

• Parameter of the chiral symmetry breaking $<\bar{\psi}\psi>$

- $\langle \bar{\psi}\psi \rangle = 0 \iff \chi$ -symmetry
- $\langle \bar{\psi}\psi \rangle \neq 0 \iff$ broken χ -symmetry

The expected more detailed QCD phase diagram

• Quarkyonic phase: baryon free \Rightarrow dense baryons McLerran, Pisarski 0706.2191

• Baryon density jumps

The expected QCD phase diagram

			2.25
.Aref'eva	Holography for Heavy-Ions Collisions	20 May 2024, Quarks2024	6 / 33

1.1

Holographic QCD

- Perturbation methods are not applicable to describe QCD phase diagram
- Lattice methods do not work, because of problems with the chemical potential.
- Holographic QCD phenomenological model(s)
- One of goals of Holographic QCD describe QCD phase diagram

• Requirements:

- reproduce the QCD results from perturbation theory at short distances
- reproduce Lattice QCD results at large distances (~ 1 fm) and small μ_B

Holographic method phenomenological approach

Motivated by AdS/CFT duality Maldacena,1998

- Temperature in QCD \iff black hole temperature in (deform.)AdS
- Thermalization in QCD \iff formation of black hole in (deform.)AdS5
- Thermalization models (black hole formation models): colliding shock waves; the area of the trapped surface determines the multiplicity

イロト 不得 とくほと 不良とう 見

Total multiplicity produced in heavy ions collision

• Results of applying the holographic approach to the description of collisions between heavy ions and quark-gluon plasma should be explanation of experimental data. As an example of such explanation of experimentally data - calculation of **the total multiplicity**

Plot from PRL'16 (ALICE) PbPb $\mathcal{M} \sim s_{NN}^{0.15}$

イロト イヨト イヨト

The bulk of the particles are born immediately after the collision of heavy ions

		**	
	ro	t' 0	67.7
1.12	LIC.		va

Multiplicity

• Experiment

 $\mathcal{M} \sim s^{0.155}$

• Macroscopic theory of high-energy collisions

Landau:
$$\mathcal{M} \sim s^{0.25}$$

- Holographic approach
 - The simplest model gives (collision of shock waves)

$$AdS: \qquad \mathcal{M} \sim s^{0.33}$$

Gubser et al, Phys.Rev. D, 2008; Gubser et al, JHEP, 2009; Alvarez-Gaume et al, PLB; 2009 Aref'eva et al, JHEP, 2009, 2010, 2012; Lin, Shuryak, JHEP, 2009, 2011; Kiritsis, Taliotis, JHEP, 2011

 \bullet Anisotropic Lifshitz type background with exponent ν

$$\mathcal{M}_{\nu} \sim s^{rac{1}{2+
u}},$$
 I.A., Golubtsova, JHEP, 2014
 $\mathcal{M}_{LHC} \sim s^{0.155} \quad
u = 4.45$

• Note on the relation of the anizotropy here with scaling in hadron scattering amplitudes in V.A.Matveev et al (dependence only on transversal momenta)

Holographic model of an anisotropic plasma in a magnetic field at a nonzero chemical potential

I.A, K. Rannu, P.Slepov, JHEP, 2021

$$S = \int d^5 x \, \sqrt{-g} \left[R - \frac{f_1(\phi)}{4} \, F_{(1)}^2 - \frac{f_2(\phi)}{4} \, F_{(2)}^2 - \frac{f_B(\phi)}{4} \, F_{(B)}^2 - \frac{1}{2} \, \partial_M \phi \partial^M \phi - V(\phi) \right] \\ ds^2 = \frac{L^2}{z^2} \, \mathfrak{b}(z) \left[-\frac{g(z)}{2} \, dt^2 + dx^2 + \left(\frac{z}{L}\right)^{2 - \frac{2}{\nu}} dy_1^2 + \frac{e^{c_B z^2}}{dy_1^2} \left(\frac{z}{L}\right)^{2 - \frac{2}{\nu}} dy_2^2 + \frac{dz^2}{g(z)} \right] \\ A_{(1)\mu} = A_t(z) \delta^0_\mu \qquad A_t(0) = \mu \qquad F_{(2)} = dy^1 \wedge dy^2 \qquad F_{(B)} = dx \wedge dy^1$$

Giataganas'13; IA, Golubtsova'14; Gürsoy, Järvinen '19; Dudal et al.'19

$$\begin{split} \mathfrak{b}(z) &= e^{2\mathcal{A}(z)} \Leftrightarrow \text{ quarks mass} \\ \textbf{Heavy quarks (b, t):} \\ \mathcal{A}(z) &= - cz^2/4 \\ \mathcal{A}(z) &= - cz^2/4 + pz^4 \\ \textbf{Light quarks (d, u)} \\ \mathcal{A}(z) &= - a \ln(bz^2 + 1) \\ \end{split}$$

_			
	1 100	÷,,	3 T T C
1.2	1 1 C		zva

20 May 2024, Quarks2024 11

イロト イポト イヨト イヨト 三日

11 / 33

Origin of 1-st order phase transition in HQCD

- g(z) blackenning function. The form of g(z) depends on $\mathcal{A}(z)$.
- Due non-monotonic dependence of $T = T(z_h) = g'(z)/4\pi \Big|_{z=z_h}$ on z_h , the entropy s = s(T) is not monotonic
- As a consequence the free energy $F = \int s dT$ undergoes the phase transition

1-st order phase transition describes transition from small black holes \rightarrow large black holes

The swallow-tailed shape

- Physical quantities that probe backgrounds are smooth relative to z_h ⇒ their dependence on T should be taken from stable region
- Non-monotonic dependence of $T = T(z_h)$ gives the 1-st PT for corresponding characteristic of QCD

I.Aref'eva

Holography for Heavy-Ions Collisions

20 May 2024, Quarks2024 12 / 33

1-st order phase transition in HQCD for light quarks

Light quarks, $\nu = 1$

IA, Ermakov, Rannu, Slepov, Eur.Phys.J. C'23

I.Aref'eva

20 May 2024, Quarks2024 13 / 33

1-st order phase transition in (μ, z_h) and (μ, T) planes

	《曰》《曰》《言》《言》 言	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Holography for Heavy-Ions Collisions	20 May 2024, Quarks2024	14 / 33

I.Aref'eva

Confinement/deconfiment phase transition in (μ, z_h) and (μ, T) planes

			문에 생 문어	≣ *) Q (*
ef'eva	Holography for Heavy-Ions Collisions	20 May 2024,	Quarks2024	15 / 33

I.Aı

Confinement/deconfiment phase transition in (μ, z_h) and (μ, T) planes

		《미》《레》《문》《문》 문	うくで
I.Aref'eva	Holography for Heavy-Ions Collisions	20 May 2024, Quarks2024	15 / 33

Confinement/deconfiment phase transition in (μ, z_h) and (μ, T) planes

1-st order phase transition in magnetic field (Light Quarks)

			E 1 1 E 1	= *) < (*
I.Aref'eva	Holography for Heavy-Ions Collisions	20 May 2024,	Quarks 2024	16 / 33

1-st order phase transition in magnetic field (Light Quarks)

		《미》《레》《문》《문》 문	$\mathcal{O}\mathcal{A}(\mathcal{O})$
eva	Holography for Heavy-Ions Collisions	20 May 2024, Quarks2024 1	7 / 33

I.Aref'

Comparison of the 1st order phase transition for light and heavy quarks

Phase transitions of the 1st order in isotropic (green lines $\nu = 1$) and anisotropic (blue lines $\nu = 4.5$) models

- For light quarks, B = 0, the onset of the 1st order PTs moves towards $\mu = 0$ as ν increases
- For heavy quarks, B = 0, the 1st order PT line becomes longer with increasing ν
- As c_B increases (strong magnetic field) phase transition line lengths decrease
- Inverse magnetic catalysis for LQ and HQ models. But for HQ the magnetic catalysis is expected

τ.

		うどの 前 (声を)(中)(10)(10)
Aref'eva	Holography for Heavy-Ions Collisions	20 May 2024, Quarks2024 18 / 33

Magnetic Catalysis vs Inverse Magnetic Catalysis

		・ロト ・四ト ・ヨト ・ヨー う	9 (P
I.Aref'eva	Holography for Heavy-Ions Collisions	20 May 2024, Quarks2024 19	33

Magnetic Catalysis for Heavy Quark Model

$$\mathfrak{b}(z) = e^{-cz^2/2} \to \mathfrak{b}(z) = e^{-cz^2/2 - 2(p-c_B q_3)z^4}$$

I.A, Hajilou, Rannu, Slepov, Eur.Phys.J.C (2023), Rannu's talk

I.Aı

			문제 제품에	≣ *)⊄(*
ef'eva	Holography for Heavy-Ions Collisions	20 May 2024,	Quarks2024	20 / 33

Running coupling in QCD. What is known/expected

A) Unified coupling matching of nonperturbative and perturbative QCD regimes.

B) Experimental data and sum rule constraints for the effective charge α_{g_1} , from: S.Brodsky at all, 2403.16126 and earlier

		《曰》《聞》《臣》《臣》 [] []	うくで
I.Aref'eva	Holography for Heavy-Ions Collisions	20 May 2024, Quarks2024	21 / 33

Running coupling in QCD. What is known/expected

A) Unified coupling matching of nonperturbative and perturbative QCD regimes.

B) Experimental data and sum rule constraints for the effective charge α_{g_1} , from: S.Brodsky at all, 2403.16126 and earlier

I.Aı

ef'eva	Holography for Heavy-Ions Collisions	20 May 2024,	Quarks2024	21 / 3
of?orm	Holography for Honey Ione Collisions	20 May 2024	Ouerke2024	91 / 2
ereva	filling apily for fleavy-folis Considers	20 May 2024,	Quarks2024	21/3

イロト イロト イヨト イヨト 一日

Running coupling for Light Quark Model $\alpha(z) = e^{\varphi(z)}$ More details: Slepov's talk

 $\varphi(z)$ - dilaton field $\varphi(z)$ is defined up to a constant: $\varphi(z)\Big|_{z=z_0} = 0$. There are 3 choices: a) $z_0 = 0$ b) $z_0 = f(z_h)$ c) $z_0 = z_h$

I.Aref'eva

$$z_0 = 10 \exp[-z_h/4] + 0.1$$

IA, K.Rannu, P.Slepov, JHEP'21

With this boundary condition the temperature dependence of σ_s fits the known lattice data Cordaso, Bicudo 1111.1317

I.A. A.Hajilou, P.Slepov, M.Usova, 2402.14512 and work in progress

 $\log \alpha(z; \mu, T)$

For heavy quarks see A.Hajilou's talk

			► < E <) < (*	1
ref'eva	Holography for Heavy-Ions Collisions	20 May 2024, Q	uarks2024 23 / 33	

I.A

I.A. A.Hajilou, P.Slepov, M.Usova, 2402.14512 and work in progress

I.Aref'eva

I.A. A.Hajilou, P.Slepov, M.Usova, 2402.14512 and work in progress

		・ロ・ ・ ロ・ ・ ボ・・	∃ ▶ ∃ ∽ < ○
I.Aref'eva	Holography for Heavy-Ions Collisions	20 May 2024, Quark	cs2024 26 / 33

Running coupling for nonzero magnetic field - work in progress

I.Aref'ev

	· · · · · · · · · · · · · · · · · · ·	4) Q (4
Holography for Heavy-Ions Collisions	20 May 2024, Quarks2024	26 / 33

The running coupling constant near a first-order phase transition in a nonzero magnetic field

		・ロ・・四・・モ・・モ・ 正	9 Q (?
I.Aref'eva	Holography for Heavy-Ions Collisions	20 May 2024, Quarks2024	27 / 33

Automodel behavior of the running coupling constant near a first-order phase transition in a nonzero magnetic field

Puc.: Automodel behaviour of logarithm of running coupling $\log \alpha_s(z)$ on temperature T and chemical potential μ at non-zero value of the magnetic field, z specifies the energetic scale, $z \sim 1/Q^2$ near the 1-st order phase transition in holographic QCD.

I.Aref'eva

Holography for Heavy-Ions Collisions

20 May 2024, Quarks2024

28 / 33

Holography for NICA

- Results of applying the holographic approach to the description of heavy ion collisions and the properties of quark-gluon plasma:
 - Prediction of new effects in anisotropic quark-gluon plasma:
 - "smeared" phase transition confinement/deconfinement;
 - dependence on the anisotropy parameter and the chemical potential of energy loss (jet quenching coefficient) and the emission rate of direct photons
 - jumps in physical quantities on the first-order phase transition and in particular the running coupling constant and its self-modeling as a function of T and μ

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

• Properties and behaviour of HQCD in $(Q^2, T, \mu, B, \nu, m_q)$ space

		▲□▶ ▲圖▶ ▲厘▶ ▲厘▶	E nac
I.Aref'eva	Holography for Heavy-Ions Collisions	20 May 2024, Quarks2024	30 / 33

- Properties and behaviour of HQCD in $(Q^2, T, \mu, B, \nu, m_q)$ space
- INPUT
 - $\alpha_s(Q^2)$ at large Q^2
 - σ_{st} at large distance

		< □ ≻ < ∰ ≻ <	注▶ ★ 注▶	三 うくい
I.Aref'eva	Holography for Heavy-Ions Collisions	20 May 2024,	Quarks2024	30 / 33

• Properties and behaviour of HQCD in $(Q^2, T, \mu, B, \nu, m_q)$ space

• INPUT

- $\alpha_s(Q^2)$ at large Q^2
- σ_{st} at large distance

• OUTPUT

- Phase structure in (T, μ) -plane
- Dependence of phase structure in (T, μ) -plane on quark mass
- Modification of phase structure with B,ν

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

 \bullet Properties and behaviour of HQCD in (Q^2,T,μ,B,ν,m_q) space

• INPUT

- $\alpha_s(Q^2)$ at large Q^2
- σ_{st} at large distance

• OUTPUT

- Phase structure in (T, μ) -plane
- Dependence of phase structure in (T, μ) -plane on quark mass
- Modification of phase structure with B,ν
- Jumps of physical quantities, such as jet quenching, energy lost, etc. on the 1-st order phase transition and dependence of jumps on *B*, anisotropy

I.Aref'eva

イロト イポト イヨト イヨト 三日

Holography for NICA

- Results of applying the holographic approach to the description of heavy ion collisions and the properties of quark-gluon plasma:
 - Prediction of new effects in anisotropic quark-gluon plasma:
 - "smeared" phase transition confinement/deconfinement;
 - dependence on the anisotropy parameter and the chemical potential of energy loss (jet quenching coefficient) and the emission rate of direct photons
 - jumps in physical quantities on the first-order phase transition and in particular the running coupling constant and its self-modeling as a function of T and μ

Backup. About quarkyonic phase

- The hadronic matter-quarkyonic matter phase transition \iff the first order phase transition for HQCD with light quarks.
- A characteristic feature of quarkyonic matter is a small (compared with the confinement potential) a linear potential between quarks, which is not sufficient to keep quarks inside hadrons.
- Transverse-longitudinal anisotropy and magnetic field essentially influence on location of the quarkyonic phase
- A jump of jet quenching on the hadronic quarkyonic phase transition

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Backup. Influence of magnetic field and anisotropy on QCD phase diagram

- Anisotropy leads to smearing of the confinement/deconfinement phase transition
- Effect of inverse (IMC)/direct magnetic (MC) catalysis [critical *T* decreases/increases with increasing of *B*]

dependents on quark mass:

for heavy quarks -MCfor light quarks -IMC

イロト イポト イヨト イヨト 三日

Backup. Main refs

- И.Я. Арефьева, "Голографическое описание кварк-глюонной плазмы, образующейся при столкновениях тяжелых ионов", УФН, 184:6 (2014)
- I.A., "QGP time formation in holographic shock waves model of heavy ion collisions" TMPh, 184 (2015), 398–417
- I.A., A. Golubtsova, "Shock waves in Lifshitz-like spacetimes," JHEP'04, 011 (2015)
- I.A. and K. Rannu, "Holographic Anisotropic Background with Confinement-Deconfinement Phase Transition," JHEP 05 (2018) 206
- $\bullet\,$ I.A., A. Golubtsova, G. Policastro, "Exact holographic RG flows and the $A_1\times A_1$ Toda chain," JHEP 05 (2019) 117
- I.A., K. Rannu, P. Slepov, "Orientation Dependence of Confinement-Deconfinement Phase Transition in Anisotropic Media," Phys. Lett. B 792 (2019) 470
- I. A., A. Patrushev, P. Slepov "Holographic Entanglement Entropy in Anisotropic Background with Confinement-Deconfinement Phase Transition", JHEP 07 (2020) 043
- I.A., K. Rannu, P. S. Slepov, "Anisotropic solutions for a holographic heavy-quark model with an external magnetic field", TMPh **206** (2021) 400
- I.A., A. Golubtsova, E. Gourgoulhon, "Holographic drag force in 5d Kerr-AdS black hole," JHEP 04 (2021) 169
- I. A., K. Rannu, P. Slepov, "Holographic Anisotropic Model for Light Quarks with Confinement-Deconfinement Phase Transition", JHEP 06 (2021) 90
- I.A., K. Rannu, P. Slepov, "Holographic Anisotropic Model for Heavy Quarks in Anisotropic Hot Dense QGP with External Magnetic Field," JHEP **07**(2021) 161
- I.A., A.Ermakov, P.Slepov, "Direct photons emission rate and electric conductivity in twice anisotropic QGP holographic model with first-order phase transition," EPJC 82 (2022) 85
- I.A., A. Ermakov, K. Rannu and P. Slepov, "Holographic model for light quarks in anisotropic hot dense QGP with external magnetic field," EPJC 83 (2023) 79