$e^+e^- o par{p}$ @ CMD-3

Ivanov Daniil on behalf of the CMD-3 collaboration

VEPP-2000 collider

to VEPP-4M & c-t-factor	orage Ring Bidg.13	Bidg.4	K-500 BEP VEPP-200 Bidg.20
E	electron-positro	on collider	Bldg.1R
Covers c.m.	energy range	from 0.36 to 2.0 GeV	CMD-3
Two ez Design parai	xperiments – C	MD-3 and SND	
Circumference	24.388 m		
Beam energy	150 ÷ 1000 MeV		↓ VEPP-2000
N of bunches	1×1	e⁺,e	
N of particles	1×10 ¹¹	booster	
Betatron tunes	4.14 / 2.14	1000 MeV 🦨	CND
Beta*	8.5 cm		
BB parameter	0.1		m
Luminosity	1×10 ³² cm ⁻² s ⁻¹		

"Round beam" optics

Energy monitoring by Compton backscattering ($\sigma_{\sqrt{s}} pprox 0.1$ MeV)

VEPP-2000

CMD-3 Detector

*Cryogenic Magnetic Detector

- Magnetic field 1.0-1.3T
- Drift chamber
 - $\succ \sigma_{R\varphi} \sim 100 \,\mu, \sigma_z \sim 2 3 \,\mathrm{mm}$
- EM calorimeter (LXE, Csl, BGO), 13.5 X₀
 - $\succ \sigma_E/E \sim 3\% 10\%$
 - $\succ \sigma_{\Theta} \sim 5 \text{ mrad}$
- TOF
- Muon counters

 $e^+e^- o par p$

Collected data

The initial goal of $\int \mathbf{L} dt = 1 \ \mathbf{fb}^{-1}$ was achieved this year.

Data collection continues.

CMD-3 final states under analysis

Signature	Final states (preliminary, published)			
2 charged	$\pi^+\pi^-$, K^+K^- , K_SK_L , $p\overline{p}$			
2 charged + γ 's	$\pi^{+}\pi^{-}\gamma, \pi^{+}\pi^{-}\pi^{0}, \pi^{+}\pi^{-}\eta, K^{+}K^{-}\pi^{0}, K^{+}K^{-}\eta, K_{S}K_{L}\pi^{0}, K_{S}K_{L}\eta, \pi^{+}\pi^{-}\pi^{0}\eta, \pi^{+}\pi^{-}2\pi^{0}, \pi^{+}\pi^{-}3\pi^{0}, \pi^{+}\pi^{-}4\pi^{0}$			
4 charged	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$, $K^{+}K^{-}\pi^{+}\pi^{-}$, $K_{S}K^{\pm}\pi^{\mp}$			
4 charged + γ 's	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}, \pi^{+}\pi^{-}\eta, \pi^{+}\pi^{-}\omega, \pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}, K^{+}K^{-}\eta, K^{+}K^{-}\omega$			
6 charged	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}, K_{S}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}, K_{S}K_{S}\pi^{+}\pi^{-}$			
6 charged + γ 's	$3(\pi^+\pi^-)\pi^0$			
Neutral	$\pi^0\gamma,\eta\gamma,\pi^0\pi^0\gamma,\pi^0\eta\gamma,\pi^0\pi^0\pi^0\gamma,\pi^0\pi^0\eta\gamma$			
Other	$n\overline{n},\pi^{0}e^{+}e^{-},\eta e^{+}e^{-}$			
Rare decays	$\eta', D^*(2007)^0$			

Work is in full swing.

Let's focus on

Motivation

Phys. Lett. B 723 (2013) 73 Phys. Lett. B 794 (2019) 64–68

- NNbar cross section in the threshold energy region store information on (anti)nucleon internal structure (electro and magnetic FFs, i.e. G_E and G_M).
- Due to the strong interaction in the final state xsection energy behaviour is complex.
- NNbar real reaction opening affects some of the multihadron cross sections in the form of a sharp dip.

However, there are still no precise experimental values of $\,G_{_{\rm E}}$ and $G_{_{\rm M}}$ in the threshold energy region.

Motivation

This process had been already studied at the CMD-3 (arXiv: <u>1507.08013 [hep-ex]</u>). However, the amount of data drastically increased, and the workflow was improved.

The BaBar and BES III collaborations also studied the process in this energy region (doi:<u>10.1103/PhysRevD.87.092005</u>, arXiv:<u>2102.10337</u>). In these works, they used the ISR technique.

Experiment	BaBar		BES III		CMD-3 (2017)		This work	
Events	2172	2172		1386	2741		43416	
Season	HIGH2017	HIGI	H2019	HIGH2020	HIGH2021	NN	Nbar2022	Total
∫Ldt, pb ⁻¹	22.68	16	5.44	37.34	47.83		128.74	253.05

Event types

"Stars" $E_{c.m.s} \lesssim 1.920 \text{ GeV}$ $E_{beam} \lesssim 960 \text{ MeV}$ In the energy region close to the production threshold, antiprotons annihilate at the vacuum beam pipe or the DC inner wall (i.e. so-called annihilation star).

At higher energies, it is possible to detect the tracks of protons and antiprotons in the DC.

Analysis workflows for these event types are **different**.

 $\begin{array}{l} \textbf{Collinear events} \\ \textbf{E}_{c.m.s} \gtrsim 1.920 \ GeV \\ \textbf{E}_{beam} \gtrsim 960 \ MeV \end{array}$

Collinear events

- 1. Event selection
- 2. Efficiency
- 3. $|G_E/G_M|$ measurement
- 4. Track reconstruction efficiency
- 5. Visible xsection

 $\begin{array}{l} E_{c.m.s} \gtrsim 1.920 \ GeV \\ E_{beam} \gtrsim 960 \ MeV \end{array}$

Collinear Event selection

- 1. 2 tracks originating from the Interaction point:
 - $\rho_{vertex} < 1 \text{ cm and } |z_{track}| < 8 \text{ cm}$
- 2. $\Delta \varphi = ||\varphi_+ \varphi_-| \pi| < 0.15 \text{ rad}$
- 3. $\Delta \theta = |\theta_+ + \theta_- \pi| < 0.2 \text{ rad}$
- 4. Total energy deposition in calorimeters $E_{tot} > 200 \text{ MeV}$
- 5. Tracks momenta correspond to proton/antiproton: $P < 1.3 \sqrt{(E_{beam}^2 - M_{proton}^2)}$
- 6. Ionisation losses corresponds to protons.
- 7. Particles are in the fiducial volume: $|\cos(\theta)| < 0.7$

We counted all the events that passed the selection criteria.

Selection efficiency

The cross section can be parameterized by two form factors, electrical G_E and magnetic G_M , whose angular distributions are different.

$$rac{dN}{dcos(heta)} \propto \left[D_M(cos(heta)) + |rac{G_E(s)}{G_M(s)}|^2 D_E(cos(heta))
ight]$$

 $\mathbf{D}_{\mathrm{E,M}}$ is an angular distribution of $\mathbf{G}_{\mathrm{E,M}}$ part.

$$D_E = sin^2(heta_p)
onumber \ D_M = 1 + cos^2(heta_p)$$

The selection efficiency depends on the $|G_E/G_M|$.

$|G_{E}/G_{M}|$ measurement

The cross section can be parameterized by two form factors, electrical G_E and magnetic G_M , whose angular distributions are different.

The experimental data can be represented as the sum of two data samples: one with $|G_E| = 1$ and $|G_M| = 0$, and the second – vice versa.

Angular distribution of the experimental data was fitted with the following function:

$$rac{dN}{dcos(heta)} \propto \left[D_M(cos(heta)) + |rac{G_E(s)}{G_M(s)}|^2 D_E(cos(heta))
ight]$$

 $D_{E,M}$ is an angular distribution of $G_{E,M}$.

The difference in track reconstruction efficiency in the MC and data was taken into account.

$$D^{(EXP)}_{ ext{corrected}}(cos heta) = D^{(EXP)}(cos heta)(rac{arepsilon_{track}^{(MC)}}{arepsilon_{track}^{(EXP)}}(cos heta))^2$$

Track reconstruction efficiency

Antiproton selection criteria:

- 1) Track with ρ_{track} < 0.2 cm and $|z_{tr}|$ < 4 cm
- 2) Negative charge
- 3) Ionisation losses and momentum correspond to antiprotons.

There are less than 3 tracks with $\rho_{track} < 3$ cm (multihadron event veto).

We paired found antiprotons with collinear protons:

- 1) Track with "good" χ^2 , $\rho_{track} < 0.2$ cm, and $|z_{tr}| < 6$ cm
- 2) Positive charge
- 3) Ionisation losses and momentum correspond to antiprotons.
- 4) $\Delta \varphi = ||\varphi_+ \varphi_-| \pi| < 0.15 \text{ rad and } \Delta \theta = |\theta_+ + \theta_- \pi| < 0.2 \text{ rad}$

$$\varepsilon_{track} = \frac{N(p|\bar{p})}{N(\bar{p})}$$

Selection efficiency

MC sample with $|G_{\rm E}/G_{\rm M}| = 1.18 \pm 0.04$.

Efficiency statistical error arises from uncertainty of the $|G_{E}/G_{M}|$ ratio.

To take into account data-MC efficiency difference related to track reconstruction, we applied the correction:

$$arepsilon_{EXP} = arepsilon_{MC} \delta^{(+)}_{track} \delta^{(-)}_{track}, \, \delta^{(+)}_{track} = \delta^{(-)}_{track} = rac{arepsilon_{track}^{(EXP)}}{arepsilon_{track}^{(MC)}}$$

Visible xsection

"Stars"

- 1. Event selection
- 2. Event counting
- 3. Efficiency
- 4. Vacuum pipe thickness in the MC
- 5. Visible xsection

 $\begin{array}{l} E_{c.m.s} \lesssim 1.920 \ GeV \\ E_{beam} \lesssim 960 \ MeV \end{array}$

Event selection

- There is a vertex that has at least 3 tracks with $\rho_{track} > 0.2$ cm, ^{Agged} No secondary protons (from the vacuum star) 2.
- 3.
- Total energy deposition in calorimeters $E_{tot} > 500 \text{ MeV}$ 4.
- 5. Minimal track momentum $p_{min} > 50 \text{ MeV}$
- 6. No collinear tracks in the vertex

Event counting

We obtained amount of the "stars" events in each energy point from the fit of ρ_{vertex} distribution: sig(MC) + bkg(expo + pol0) \rightarrow data. We used $|G_{\rm E}/G_{\rm M}| = 1.18 \pm 0.04$ to generate the MC sample. The background model has ~2% systematic uncertainty

Selection efficiency

$|G_{\rm E}^{}/G_{\rm M}^{}| = 1.18 \pm 0.04$

Antiprotons mainly annihilates at rest. But after 1.895 GeV antiprotons pass through the vacuum pipe => ε_{MC} drops sharply at high energies.

22

Vacuum pipe thickness in MC

We suppose cross section to be constant in energy region 1.895 – 1.915 GeV. Due to MC simulation flaws (e.g. wrong dE/dx or material densities.) the $\varepsilon_{\text{EXP}} \neq \varepsilon_{\text{MC}}$.

We introduced the effective pipe thickness correction $\Delta_{\rm pipe}$ to take into account these flaws.

Vacuum pipe thickness in MC

Visible xsection

GENAT4 correctly simulates energy dependence of the antiproton probability to stop in the material. But the annihilation at rest doesn't. Hence, we don't know energy-independent factor of the selection efficiency **P(annihilation)**.

 $\varepsilon_{MC} = P(stop)P(annihilation)\varepsilon(selection|annihilation)$

The visible cross section fit

$$\sigma_{born} = \theta(E_{c.m.s.} - threshold) * level * (1 - e^{-slope*(E_{c.m.s.} - threshold)})$$

$$* \sigma_{vis}(s) = \frac{1}{\sqrt{2\pi\sigma_{E}^{2}(s)}} \int_{\infty}^{\infty} e^{-\frac{(E_{c.m.s} - \sqrt{(s)})^{2}}{2\sigma_{E}^{2}(s)}} \times \int_{0}^{1-s_{T}/E_{c.m.s}^{2}} F(x, E_{c.m.s}^{2}) \sigma_{born}(E^{2}(1-x)) dx dE$$

$$\chi^{2} = (\sigma^{(eval)} - \sigma^{(data)}/k_{stars}) / \Delta \sigma^{*2}$$

$$k_{stars} = \begin{cases} \text{free parameter, if } E_{beam} < 955 \text{ MeV, fixed} \\ 1 \text{ if } E_{beam} > 955 \text{ MeV, fixed} \end{cases}$$

$$k_{stars} - \text{efficiency correction due to P\bar{P}$$

Pos

0

1

2

3

Name

threshold

level

slope

k stars

type

free

free

free

free

`stars annihilation cross-section value in the Geant4

$$\chi^2$$
/ndf = 24/39

* arXiv: <u>2108.07539</u> [hep-ex]

23,9607 / 42 0.98859 ± 0.0115308

Error +/-

0.0003

0.011

71.3

0.0147

Value

1.8755

0.850

382.5

0.5544

Results

Table 3: Systematic uncertainties for the collinear events.

Source	Average value	Maximum Value
Collinearity cut	0.3%	0.7%
Other selection criteria	0.25%	0.3%
$ G_E/G_M $	2%	3%
Luminosity	1%	1%
Radiative correction	1%	1%
Track reconstruction	1.5%	3%
Total	2.9%	4.5%

Table 2: Systematic uncertainties for the "Stars" events.

Source	Average value	Maximum Value
Total energy deposition cut	4.7%	9%
ρ_{vertex} cut	0.5%	0.8%
Event counting	2%	2%
Luminosity	1%	1%
Radiative correction	1%	1%
$ G_E/G_M $	1.5%	1.5%
Tube width uncertainty	2%	2%
k_{stars} value	5%	5%
Total	7.7%	10.9%

27

This work (**Preliminary**): $|G_E/G_M| = 1.18 \pm 0.04 \pm 0.06 ext{ if } 1.92 ext{ GeV} < E_{c.m.s} < 2.007 ext{ GeV}$

$$\begin{split} & \text{BESIII} \ (\text{ISR}) : |G_E/G_M| = \begin{cases} 1.27 \pm 0.23 \pm 0.09, \text{ if } 1.877 \text{ GeV} < M_{p\bar{p}} < 1.950 \text{ GeV}, \\ 1.78 \pm 0.33 \pm 0.11, \text{ if } 1.950 \text{ GeV} < M_{p\bar{p}} < 2.025 \text{ GeV} \end{cases} \quad \text{arXiv:} \underline{2102.10337} \ [\text{hep-ex}] \\ & \text{BESIII} \ (2020) : |G_E/G_M| = 1.38 \pm 0.10 \pm 0.03 \ (\text{E}_{\text{c.m.s}} = 2.0 \text{ GeV}) \qquad \text{arXiv:} \underline{2102.10337} \ [\text{hep-ex}] \\ & \text{BaBar}(\text{ISR}) : |G_E/G_M| = \begin{cases} 1.36^{+0.15+0.05}_{-0.14-0.04}, \text{ if } 1.877 \text{ GeV} < M_{p\bar{p}} < 1.950 \text{ GeV}, \\ 1.48^{+0.16+0.06}_{-0.14-0.05}, \text{ if } 1.950 \text{ GeV} < M_{p\bar{p}} < 2.025 \text{ GeV} \end{cases} \quad \text{arXiv:} \underline{2102.10337} \ [\text{hep-ex}] \\ & \text{arXiv:} \underline{2102.10337} \ [\text{hep-ex}] \end{cases} \end{split}$$

Back up

Born cross section parametrization

$$egin{split} \sigma_{par{p}}(s) &= rac{4\pilphaeta C}{3s} \left[|G_M(s)|^2 + rac{2M_p^2}{s} |G_E(s)|^2
ight] \ C &= y/(1-e^{-y}), \ y &= \pi lpha/eta, \ eta &= \sqrt{1-4M_p^2/s} \end{split}$$

Pipe thickness correction

Pipe thickness correction

Comparison with the phenomenology

 χ^2 /ndf = 15/41

arXiv: 2207.14020 [hep-ph]

Name	type	1	Value	1	Error +/-
threshold	fixed	1	1.87654 GeV	1	0.001 GeV
scale	free	1	1.029	1	0.015
k_stars	free	1	0.5211	Ì	0.0115