Status and physics with new T2K near detector SuperFGD

Yury Kudenko INR RAS

> QUARKS-2024 Pereslavl, Russia 20-24 May 2024

Supported by the RSF grant # 24-12-00271

> 550 members
76 institutions
from 14 countries
Russai: INR, JINR

Long-Baseline Neutrino Oscillation Experiment

Experiment T2K

T2K collects data since 2010

CP violation: T2K and NOvA

T2K Preliminary

 $u_{\mu} \rightarrow v_{\mu} \text{ and } \nu_{\mu} \rightarrow \nu_{e}: \text{ systematic uncertainties reduced from } \sim 15\% \text{ to } \sim 5\% \text{ using ND280 data}$

HyperK: Sensitivity to CP violation

Water Cherenkov detector 71 m (height) x 68 m (diameter) Total mass 260 kt Inner Detector: 20000 50 cm PMTs + mPMTs Outer Detector: ~4000 7.5 cm PMTs + WLS plates

- 10 years of data taking HyperK, arXiv:1805.04163
 - 1.3 MW beam power → 2.7x10²² POT

Exclusion of CP conservation

Motivation for ND280 upgrade

- Uncertainties of current T2K oscillation measurements are dominated by statistics
 - However, systematics will limit T2K (and HyperK) sensitivity in future

Post-fit errors of the most significant systematic parameters

Parameter	Current ND280 (%)	Upgrade ND280 (%)
SK flux normalisation	3.1	2.4
$(0.6 < E_{v} < 0.7 \text{ GeV})$		
MA_{QE} (GeV/c ²)	2.6	1.8
v_{μ} 2p2h normalisation	9.5	5.9
2p2h shape on Carbon	15.6	9.4
MA_{RES} (GeV/ c^2)	1.8	1.2
Final State Interaction (π absorption)	6.5	3.4

The systematic error can be reduced by about 30% in the ND280 upgrade configuration

- > Important to measure neutrino interactions in all phase space
- > Precisely detect particles produced at any angle
- > Reduce detection threshold, measure protons with low threshold
- \succ Measure neutrons in anti- v_{μ} interactions
- **>** Reduce background, obtain better track identification using TOF
- Provide electron/gamma separation
- \succ Reduce total systematics to $\sim 3\%$ level for appearance modes

ND280 upgrade

New upstream detectors

- 3D fine-grained

scintillator target/detector SuperFGD

- Two Horizontal TPCs
- TOF system around new tracker

arXiv:1901.03750

SuperFGD

- Volume ~192 x 184 x 56 cm³
- ~2 x 10⁶ scintillator cubes , each 1 x 1 x 1 cm³
- Each cube has 3 orthogonal holes of 1.5 mm diameter
- 3D (x,y,z) WLS readout
- About 60000 readout WLS/MPPC channels
- Total active weight about 2t

SuperFGD project: about 100 participants from 6 countries Russia: INR, JINR, LPI

Fully active, highly granular, 4π scintillator neutrino detector with 3D WLS/MPPC readout proposed, and constructed at INR

JINST 13 (2018) 02006

Cubes produced by injection molding at OOO Uniplast, Vladimir
Covered by chemical reflector
Tolerance (each side) about 30 microns

Talks on 21 May: A.Chvirova D.Fedorova A.Shvartsman

SFGD prototypes: beam tests (I)

SFGD prototypes were tested:

- with charged particles beams (e, μ , π , p) at CERN

Stopped protons

12

500 =

400

300

200

100

22 24

X axis

- with neutron beam at LANL

Muons

SFGD prototypes

e+, B=0.2T

Parameters of the SFGD prototype obtained in the beam tests at CERN:

- Light yield of one cube 50-60 p.e./MIP, 1 fiber readout
- Light yield of one cube 150-180 p.e./MIP for sum of 3 orthogonal fibers
- Time resolution ~1 ns for MIP and 1 fiber readout

20 **µ**

- Dark rate of MPPCs:
 - 50-70 kHz (th=0.5 p.e.), 0.5 kHz (th=1.5 p.e.)

PLB 840 (2023) 137843

JINST 18 (2023) P01012

Neutron cross-section measurements at LANL with SuperFGD prototypes

Milestones of SuperFGD

J-PARC 2024

Calibration of SuperFGD

New ND280 detectors

Installation of all detectors (SuperFGD, HA-TPC, TOF) into ND280 magnet completed in May 2024

Features of upgraded ND280

Current ND280 \Rightarrow *Upgraded ND280*

- SuperFGD and HA-TPC improve acceptance for high angle and backward tracks •
- SuperFGD provides a high precision probe of the nuclear effects responsible for some of the dominant ٠ systematics in neutrino oscillation analyses \rightarrow reduced systematics
- High granularity of SuperFGD \rightarrow detection of short proton tracks which is very important for T2K analysis ٠
- SuperFGD provides reconstruction of the neutrino energy by time-of-flight ٠
- TOF Detector separates background from outside SuperFGD and HA-TPC ٠

Neutron detection by SuperFGD using time-of-flight

SFGD: efficiency of p, n, μ detection

Low detection threshold of protons neutrons, muons, and pions

SFGD particle identification

Neutrino energy reconstruction

Nuclei

smearing

and bias

Ε,

- $E_b\,{\simeq}25$ MeV for carbon
- Current ND280 uses muons for reconstruction of the neutrino energy and some protons with high threshold
- SuperFGD will provide reconstruction of the neutrino energy by measuring both the muon and proton energies
- More precise Ev reconstruction, more sensitive to oscillation physics

Proton momentum distribution from v_{μ} CC 1muon+1proton selection

S.Dolan, talk at HEP-EPS 2021

No detector smearing

Anti-neutrino energy reconstruction

Muon antineutrino CCQE

 $\bar{\nu}_{\mu}$ +p $\rightarrow \mu^{+}$ +n

Transverse kinematic imbalance due to Fermi motion, FSI, 2p2h, pion absorption... For free proton $\delta p_{\tau} = 0$

Transverse kinematic imbalance

Very low δp_T – signature of neutrino interaction with hydrogen

ν_e constraints

SuperFGD: expected excellent electron/photon separation

- $\succ v_e$ contamination in v_{μ} beam
- > Understanding of difference between $\sigma(v_e)$, $\sigma(\overline{\nu}_e)$, $\sigma(v_{\mu})$, $\sigma(\overline{\nu}_{\mu})$ crucial for a search for CP violation in neutrino oscillations and measurements of oscillation parameters

Measurement of double ratio:

$[\sigma(v_{\mu})/\sigma(v_{e})] / [\sigma(\overline{v}_{\mu})/\sigma(\overline{v}_{e})]$

Meson decays into MCPs

New particles with small electric charge can arise in some extensions of SM

Source of MCPs: decays of mesons produced by intense proton beam of 30 GeV at J-PARC

Light vector mesons ρ , ω , ϕ decay into MCP pair $\chi \overline{\chi}$

$$\operatorname{Br}(V \to \chi \bar{\chi}) = \epsilon^2 \cdot \operatorname{Br}(X \to e^+ e^-) \cdot \left(1 + 2\frac{m_{\chi}^2}{M_V^2}\right) \sqrt{1 - 4\frac{m_{\chi}^2}{M_V^2}}, \quad V \in \{\rho, \, \omega, \, \phi\}$$

Pseudoscalar mesons π^{0} , η , η' decay into MCP $\chi \overline{\chi}$ pair through three-body decays

Detection MCPs in SuperFGD

D

Expected sensitivity to MCPs

0.5x10²² POT **T2K:** Phys.Lett.B 822 (2021) HyperK: 2.7x10²² POT No background 90% CL exclusion regions MiniBooNE MilliQ@SLAC 10⁻¹ LHC ArgoNeui 10⁻² ∈=Q_X/e Ψ BEBC T2K 10^{-3} T2K + T2HK ArgoNeut - PRL 124 (2020) 131801 BEBC - arXiv:2011.08153 LSND 10^{-4} 10^{2} 10^{3} 10^{4} 10¹ m_{χ} (MeV)

T2K, HyperK and DUNE

T2K muon neutrino beam, CC events

Conclusion

- Reduction of systematic uncertainties crucial for CP-violation search and oscillation measurements in T2K and HyperK
- Upgrade of T2K near detector ND280 with a new neutrino target-detector SuperFGD is completed
- SuperFGD will be a central near neutrino detector in T2K and HyperK experiments
- □ SuperFGD is one of key instruments in a CP violation search
- □ Rich neutrino interaction physics
- □ Search for exotics: sterile neutrinos, MCPs, HNLs....
- □ SuperFGD begun to accumulate data in T2K neutrino beam

Thank you very much for your attention