Axion-like dark matter and Bose stars

Dmitry Levkov INR RAS & ITMP MSU

International seminar "Quarks-2024" 20/05/2024

Dimutry	- A1/	2011

Light Axion–Like Particles (ALP)

Dmitry Levkov

Popular models

QCD axions

Peccei, Quinn '77

• Strong CP-problem:

 $\Delta \mathcal{L}_{QCD} \sim \theta \ G_{\mu\nu} \tilde{G}^{\mu\nu}, \ \frac{\theta < 10^{-10}}{\text{experiment}}$

- Solution field $\Phi(x)$! low $E: \Phi = f_a \cdot e^{i\theta(x)}$ explicit breaking \equiv anomaly $\mathcal{V} \sim \theta(x) G_{\mu\nu} \tilde{G}^{\mu\nu}$
 - $\langle \mathcal{V} \rangle_{QCD} \sim f_{\pi}^2 m_{\pi}^2 \left[1 \cos \theta \right]$
- Axion field: $\theta = a(x)/f_a$ mass: $m_a \sim f_\pi m_\pi/f_a$ interactions: e.g. di Cortona et al '16 $g_{a\gamma\gamma} = cf_a^{-1}$, $10^{-4} \leq c \leq 1$ $g_{ap} \sim g_{an} \sim f_a^{-1}$

String axions

e.g. Arvanitaki et al '10

• Strings live in $10d = 4d \times d$

⁶d Calabi–Yau

- Axions = CY «symmetries» $\theta_i(x)$ typically ~ 30 axions scale: $f_a \equiv a/\theta \sim 10^{-2} M_{pl}$ explicit breaking \equiv instantons
- Interactions are tiny! mass: $m_a \propto \underbrace{e^{-S_{inst}/2}}_{arbitrary!}$ $g_{a\gamma\gamma} \sim g_{ap} \sim g_{an} \propto f_a^{-1}$ $\lambda \sim m_a^2/f_a^2 \sim 10^{-100}$

Dmitry Levkov

Light axions form good dark matter!

• They are long-living:

$$\frac{1}{\left[\begin{array}{c} a \\ \\ \end{array}\right]} \sim \underbrace{g_{a\gamma\gamma}^{a\gamma} m_{a}^{3}}_{\propto m_{a}^{5}} \ll (10^{10} \text{ yr})^{-1}$$
$$\Rightarrow \underbrace{m_{a} \ll 100 \text{ eV}}_{m_{a} \ll 100 \text{ eV}} \text{ (QCD axions)}$$

• They should fit into galaxies:

$$(m_a v)^{-1} \lesssim \mathrm{kpc} \quad \Rightarrow \quad m_a \gtrsim 10^{-22} \, \mathrm{eV}$$

- Quantum («fuzzy») dark matter: $(m_a v)^{-1} \sim \text{kpc} \Rightarrow m_a \sim 10^{-22} \text{ eV}$
- Large occupation numbers:

$$m_a \ll 100 \text{ eV} \Rightarrow f \sim N_a/(Rm_a v)^3 \gg 1$$

Fornax galaxy

$$ho_{dm} \sim 0.1 \ M_{\odot}/{
m pc}^3$$

 $R \sim {
m kpc}$
 $v \sim 10 \ {
m km/s}$

thermalization \Rightarrow Bose–Einstein condensation

Generation: vacuum realignment at $f_a > H_{infl}$

Generation: vacuum realignment at $f_a < H_{infl}$

- Spontaneous breaking: $\Phi = f_a \cdot e^{ia(x)/f_a}$ at $T \leq f_a$
 - \rightarrow volumes $I_H = H^{-1}$ are causally disconnected
 - \Rightarrow different a(x) inside each I_H
 - \Rightarrow strings of thickness f_{2}^{-1}
- $m_a < 3H$ massless a(x) \Rightarrow mix inside I_{H}
- $m_a \gtrsim 3H$ massive a(x) & a single vacuum a = 0 \rightarrow dust: $a \propto \cos(m_a t)$
 - \Rightarrow inhomogeneities of size $I_H: m_a \sim 3H!$
 - \rightarrow but also; domain walls form $0 \rightarrow a \rightarrow 2\pi f_a$ strings & walls annihilate!

Inhomogeneities \Rightarrow axion miniclusters Kolb, Tkachev '94 Now (QCD axions): 70% in miniclusters, $R_{\rm mc} \sim 10 \div 500 \, {\rm AU}, \ M_{\rm mc} \sim 10^{-(10 \div 18)} M_{\odot}$ grav/bound Pierobon et al '23

• QCD axions: $T \sim \text{GeV}$ (QCD phase transition)

 $m_a > 3H(t)$ $dust = \ll sand \gg$ H

inhomogeneities Quarks-2024, 20/05/2024 6/22

Dmitry Levkov

ALP dark matter

Simulation of QCD phase transition

Buschmann, Foster, Safdi '19

Simulations:

Kolb, Tkachev '94 Klaer, Moore '17 Buschmann et al '19 '22 Ghorghetto et al '20

minicluster uncertainties

Bose-Einstein condensation via gravitational scattering

• Gravitational relaxation:

DL, Panin, Tkachev '18

Condensate in «fuzzy» dark matter, $m_a \sim 10^{-22}\,{ m eV}$

Dwarf galaxy \sim Fornax:

 $M\sim4 imes10^9~M_\odot$, $M_{
m BEC}\sim10^8~M_\odot$

Simulation of Bose condensation

Start: virialized (random) gas in the box

 \rightarrow Simulations: stop growing at $M_{bs} \propto \sqrt{M_{mc}/R_{mc}} - \text{small!}$

Schive et al '14

Ruffini. Bonazzola '69

 \rightarrow Self–similar kinetics: $M_{bs} \propto t^{1/3}$ – slow growth continues!

 $\Rightarrow O(1)$ of miniclusters is eaten by Bose stars Bose stars form $10 \div 50\%$ of dark matter

"core-halo"

We need precise & realistic simulations!

Dmitry Levkov

Dmitry Levkov

ALP dark matter

Quarks-2024, 20/05/2024 12/22

см. Irastorza, Redondo '18

Light through the wall [ALPS, OSQAR, ALPS-II, III]

Some experiments: dark matter axions

- $f_a \sim 10^{27} (m_a/\mu {\rm eV})^{-4} \gg 1 {\rm coherent \ amplification!}$
- Haloscopes (ADMX)
 - + resonance: $m_a = \omega \sim L^{-1} \sim \mu eV$ \Rightarrow high sensitivity!
 - resonance: scan over $\omega = m_a$

$$\left| g_{a\gamma\gamma} \lesssim 10^{-15}\,{
m GeV^{-1}} ~~{
m at}~~m_a \sim 2-3\,\mu{
m eV}
ight|$$
 (ADMX)

• Plethora of other ideas!

Experimental constraints on axion-like dark matter

из Irastorza, Redondo '18

Planned experiments

из Snowmass '22

Manifestations of miniclusters

- Suppression of the signal miniclusters ⇒ mini-voids
 → mean signal × √30%
 0.5
 → in mini-voids: signal/3.5
- Microlensing? Kolb, Tkachev '94 \rightarrow only if $M_{mc} \gtrsim 10^{-11} M_{\odot}, m_a \gtrsim 10^{-3} \text{ eV}$ not for QCD axions? Ellis et al '22
 - \Rightarrow challenging for future exps.
- Tidal streams Tinyakov et al '15; Shen et al '22 \rightarrow meet the minicluster: once per 10⁵ yr
 - \rightarrow But: minicluster + star = tidal stream
 - \rightarrow meet the stream: once per $\sim 20~{\rm yr}$
 - \Rightarrow haloscopes may be lucky!

Eggemeier et al '22

Instability of a rotating Bose star

ÿ

Interaction of QCD axions with photons

Conclusions

Ultralight (axion-like) dark matter is:

- Motivated theoretically
- Leads to unusual cosmology

with miniclusters and Bose stars

• Search for axions is is a creative business!

Thank you for attention!

Supported by RSCF grant 22-12-00215

Dmitry Levkov

ALP dark matter

Quarks-2024, 20/05/2024 22/22