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Q-balls

Q-ball is a single-field non-topological
soliton, with standard ansatz
ϕ(t, x⃗) = e−iωt f (x⃗).

In order for Q-balls to exist, it is
necessary that the potential satisfy
the relation

V ′′(0) > min
ϕ

[2V (|ϕ|)/|ϕ|2] . (1)

Figure 1: An illustration of typical Q-ball
profile.

The hint of Q-ball’s existence can be
seen from the stability analysis of the
condensate

V ′′(f )− V ′(f )

f
< 0 . (2)
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A simplest choice of the potential would be the renormalizable non-linear
quartic self-interaction, which supplements the mass term, i.e.

V (|ϕ|) = m2|ϕ|2 −
λϕ

4
|ϕ|4 . (3)

Negatively defined energy functional;
Does not support any stable classical solutions.

However, classical Q-balls may exist in a model with a single
complex scalar field and a suitable nonrenormalizable
self-interaction potential.
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FLS solitons

Friedberg-Lee-Sirlin (FLS) model (1976) provides non-topological solitons
in (3 + 1) dimensions. No mass parameters in (3 + 1).

L = ∂µϕ
∗∂µϕ+

1
2
∂µχ∂

µχ− V (|ϕ|, χ),

V (|ϕ|, χ) = h2|ϕ|2χ2 +
κ2

2
(χ2 − v2)2 (4)

Symmetries:
global U(1) for complex field ϕ, ϕ → eiαϕ,

discrete Z2 for real χ, χ → −χ.
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Motivation and Goals

1 FLS model as a QFT;
2 Quantum corrections (mass hierarchy);
3 EFT for Q-balls.
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UV-completed FLS

The general renormalizable UV-completed FLS model Lagrangian has the
form

L = ∂µϕ
∗∂µϕ+

1
2
∂µχ∂

µχ− V (|ϕ|, χ),

V (|ϕ|, χ) = m2
ϕ|ϕ|2 +

λ

2
|ϕ|4 + h2|ϕ|2χ2 +

κ2

2
(χ2 − v2)2.

(5)

For two-field theories, condensate stability condition (2) should be modified
as

V ′′
χχ(f , χ)

[
V ′′
ff (f , χ)−

1
f
V ′
f (f , χ)

]
+
[
V ′′
f χ(f , χ)

]2
< 0. (6)
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It is convenient to introduce the potential

U(|ϕ|) = ω2|ϕ|2 − Veff (|ϕ|), (7)

where
Veff (|ϕ|) = V (|ϕ|, χ)

∣∣∣
∂V (|ϕ|,χ)

∂χ
=0

. (8)

Figure 2: Mechanical potential U(|ϕ|).
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Figure 3: The mechanical potential U(|ϕ|) of the model (5) plotted for different
values of parameters ω. The couplings of the model are set to h = 1, κ = 1 and
λ = 0.1, while the nondimensionalization of the Lagrangian (5) is done by the
substraction of the v4 multiplier. Without loss of generality, we set v = 1. The
black dot represents a condensate.
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As can be seen from Eq.(7), the quartic self-interaction λ-term induces a
lower bound of parameter ω (see Fig.3)

ω− = v(κ2λ)
1
4 , while λ ≤ h4

4κ2 . (9)

At ω = ω−, the only possible initial value of |ϕ| is

|ϕ|in = C =
ω−√
λ
, (10)

which also provides a local extremum, so that U(C ) = 0 and U
′
(C ) = 0.

Thus, a ϕ = Ce−iω−t is a homogeneous solution that represents a
condensate.
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Coleman-Weinberg potential

We start by shifting fields by their classical values

ϕ(∗) = ϕ̂(∗) + ϕ
(∗)
q ,

χ = χ̂+ χq.
(11)

Now, let us introduce the mass matrix W as Wij =
∂2V (φ)

∂φq,i∂φq,j
for a theory

with a set of {φi} fields.

W =

(
m2

ϕ + λ|ϕ̂|2 + h2χ̂2 2h2ϕ̂χ̂

2h2ϕ̂∗χ̂ 2h2|ϕ̂|2 + κ2(6χ̂2 − 2v2)

)
(12)

We assume the following mass hierarchy: Wϕ∗ϕ ≪ Wχχ. In this case, we
set the mass matrix W ’s power counting by assuming that couplings h ∼ z
and κ ∼ 1, while z ≪ 1.
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In the leading order of perturbations, ϕ(∗)
q = 0 and χq is integrated-out as

V1−loop =
1

64π2

[
W 2

χχ

(
log

Wχχ

µ2
H

− 3
2

)]
, (13)

where µH is an energy scale of order µ2
H ∼ Wχχ, and the 1-loop

contribution is determined specifically at non-negative Wχχ.

VCW (|ϕ̂|, χ̂) = h2|ϕ̂|2χ̂2 +
κ2

2
(χ̂2 − v2)2 + V1−loop (14)

Eduard Kim, Emin Nugaev , Yakov Shnir Large solitons flattened by small quantum corrections



Figure 4: The 1-loop Coleman-Weinberg potential profile of the UV-completed
FLS model. The parameters of the model are set to h = 0.01 and κ = 1.
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Quantum corrected Q-balls

Firstly, we integrate-out heavy field χ on the classical level by using
equations of motion

∂VCW (|ϕ̂|, χ̂)
∂χ̂

= 0. (15)

The effective potential is of the form

Veff (|ϕ̂|) =
[
m2

L|ϕ̂|2 −
λL

2
|ϕ̂|4 + Λ̂L

]
Θ

(
mL√
λL

− |ϕ̂|
)
+

+

[
−m2

R |ϕ̂|2 +
λR

2
|ϕ̂|4 + Λ̂R

]
Θ

(
|ϕ̂| − mL√

λL

)
,

(16)

where Λ̂L,R is a constant shift, and Θ(x) is a Heaviside step function.

Eduard Kim, Emin Nugaev , Yakov Shnir Large solitons flattened by small quantum corrections



Figure 5: The effective potential VCW (|ϕ|2) is shown. The parameters are set to
h = 0.01 and κ = 1.

Eduard Kim, Emin Nugaev , Yakov Shnir Large solitons flattened by small quantum corrections



After constructing an effective potential, we use redefined Eq.(7)

U(|ϕ̂|) = ω2|ϕ̂|2 − Veff (|ϕ̂|) + Λ̂L, (17)

so that U(0) = 0. Q-ball solutions possess the same type of behaviour that
was shown for the UV-completed FLS model. The lower bound on
parameter ω is

ω2
− =

√
2λR(Λ̂R − Λ̂L)−m2

R . (18)

In the limit ω → ω−, the complex field ϕ solution profile resembles a
thin-wall regime solution, and then finally settles at the condensate solution

ϕ̂ = Ce−iω−t , where C =

√
2(Λ̂R − Λ̂L)

λR
. (19)
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Figure 6: The comparison of the initial
values f (0) (presented as color-filled
dots on the plot) of the Q-ball solutions
for the classical/quantum corrected FLS
models effective potential at h = 0.01,
κ = 1 and ω = 0.8.

Figure 7: The Q-ball energy E
v

(regularized by subtracting Λ̂L from the
effective potential to set Veff (0) = 0) is
plotted as a function of U(1) charge Q
for theory with effective potential.
Parameters are set to h = 0.01 and
κ = 1.
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Results and outlook

UV-completion of the FLS model;
Thin-wall approximation;
Coleman-Weinberg mechanism induces a new mass scale ω−.
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