Large solitons flattened by small quantum corrections
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Q-balls

Q-ball is a single-field non-topological
soliton, with standard ansatz
o(t,X) = e” 'Y (X).

—— Q-ball field profile

1l

X

Figure 1: An illustration of typical Q-ball
profile.

In order for Q-balls to exist, it is
necessary that the potential satisfy
the relation

V(0) > min 2V(I¢)/16l]. (1)

The hint of Q-ball’s existence can be
seen from the stability analysis of the
condensate

V'(f)

V() -2 <0, (2)

Eduard Kim, Emin Nugaev , Yakov Shnir Large solitons flattened by small quantum corrections



A simplest choice of the potential would be the renormalizable non-linear

quartic self-interaction, which supplements the mass term, i.e.
2.2 Aoy 4
V(lol) = mPlof? — 21l

o Negatively defined energy functional,

@ Does not support any stable classical solutions.

However, classical Q-balls may exist in a model with a single
complex scalar field and a suitable nonrenormalizable
self-interaction potential.
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FLS solitons

Friedberg-Lee-Sirlin (FLS) model (1976) provides non-topological solitons
in (34 1) dimensions. No mass parameters in (3 + 1).

. 1
L= 0,970"¢ + 50,x0"x = V(|#], x),

%2

(2 - 4)

V(Igl, x) = h?|6x* +
Symmetries:

global U(1) for complex field ¢, ¢ — /¢,
discrete Z; for real x, x — —x.
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Motivation and Goals

@ FLS model as a QFT;
@ Quantum corrections (mass hierarchy);
© EFT for Q-balls.
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UV-completed FLS

The general renormalizable UV-completed FLS model Lagrangian has the
form

1
L =0,9"0"¢ + 50,x9"x = V(|¢], x),
2 (5)

A
V(g1 x) = ml6l® + S 161" + B*[6]*X* + =

(X2 _ V2)2.
For two-field theories, condensate stability condition (2) should be modified
as

1

2
V() [ Vir(Fox) = 2 V()| + [VA(F.x)]” <0, (6)
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It is convenient to introduce the potential

U(|6l) = w?|9f* — Ver(I9), (7)

where

Verr(191) = V(191 3)  pyiiong - (8)

U.

yio

Figure 2: Mechanical potential U(|¢|).
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Mechanical effective potential for the UV-complete FLS model
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Figure 3: The mechanical potential U(|¢|) of the model (5) plotted for different
values of parameters w. The couplings of the model are set to h =1, =1 and
A = 0.1, while the nondimensionalization of the Lagrangian (5) is done by the
substraction of the v* multiplier. Without loss of generality, we set v = 1. The
black dot represents a condensate.
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As can be seen from Eq.(7), the quartic self-interaction A-term induces a
lower bound of parameter w (see Fig.3)

4

h
wo = v(%z)\)%, while A < el (9)

At w = w_, the only possible initial value of |¢| is
w-
VX

which also provides a local extremum, so that U(C) =0 and U'(C) = 0.
Thus, a ¢ = Ce '~ is a homogeneous solution that represents a
condensate.

¢lin=C = (10)
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Coleman-Weinberg potential

We start by shifting fields by their classical values

o) = 3 + o),
X =X+ Xq-

(11)

2
Now, let us introduce the mass matrix W as Wj; = M for a theory
. 0¢4q,i0¢q,;
with a set of {p;} fields.

2 212 1 202 274
W= m¢—|-)\|<f\A —/i\-h X o 2h2¢XA2 , (12)
2h%p* X 2h%|p|° + #°(6° — 2v°)

We assume the following mass hierarchy: Wy«4 < W, In this case, we
set the mass matrix W's power counting by assuming that couplings h ~ z
and s ~ 1, while z < 1.
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In the leading order of perturbations, ¢£,*) = 0 and xgq is integrated-out as

1 > Wy 3
Vlfloop 641 A0 |:WXX <| ,u%_/ - E ) (13)

where 1y is an energy scale of order 12, ~ W,,, and the 1-loop
contribution is determined specifically at non-negative W, .

2
N ~ i ~ % ~
Vew (9], %) = h?|o]2%% + - (% — v

5 )2 + V1,/oop (14-)
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Figure 4: The 1-loop Coleman-Weinberg potential profile of the UV-completed
FLS model. The parameters of the model are set to h = 0.01 and s = 1.
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Quantum corrected Q-balls

Firstly, we integrate-out heavy field x on the classical level by using
equations of motion

Vew(I3.%) _
o%

The effective potential is of the form

0. (15)

222 ALira R mg 2
Var(181) = | w162 = 161 + A @ (T - 1d1) + »
2122 | AR 24 A 2 mL
|-l SE101 + A @ (181 ).

where A/ g is a constant shift, and ©(x) is a Heaviside step function.
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Effective potential

—— Effective potential (Coleman-Weinberg)
------- Effective potential (classical)
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Figure 5: The effective potential Ve (|¢|?) is shown. The parameters are set to
h=0.01 and » = 1.
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After constructing an effective potential, we use redefined Eq.(7)

U(191) = w?|8 = Verr (19]) + Av, (17)

so that U(0) = 0. Q-ball solutions possess the same type of behaviour that
was shown for the UV-completed FLS model. The lower bound on

parameter w is
w? = \/2Xr(Ag — AL) — m>. (18)

In the limit w — w_, the complex field ¢ solution profile resembles a
thin-wall regime solution, and then finally settles at the condensate solution

2(Ar — AL)

b= Ce -t where C = .
AR

(19)
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Mechanical effective potential
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Figure 6: The comparison of the initial
values f(0) (presented as color-filled
dots on the plot) of the Q-ball solutions
for the classical/quantum corrected FLS
models effective potential at h = 0.01,
»=1and w=0.8.
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Figure 7: The Q-ball energy %
(regularized by subtracting A, from the
effective potential to set Veg(0) = 0) is
plotted as a function of U(1) charge Q
for theory with effective potential.

Parameters are set to h = 0.01 and
x=1.
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Results and outlook

@ UV-completion of the FLS model;
@ Thin-wall approximation;

o Coleman-Weinberg mechanism induces a new mass scale w_.
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