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> Some problems of Inflation

n-problem. In large field models of inflation, the inflaton has to
traverse a distance in field space larger than the Planck mass M), in
natural units. This has been argued to be problematic, since
non-renormalizable quantum corrections to the field’s action arise. In
the absence of functional fine-tuning or additional symmetries,
inflation would be spoiled;

The presence of eternal inflation in almost all proposals has been
argued to lead to a possible loss of predictability due to our inability to
prescribe a unique measure: this is the so-called measure problem.

Inflation does not provide a theory of initial conditions that would
explain why the inflaton field starts out high in its potential.

A. Linde (2014), 1402.0526
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» Alternative scenarios

Bounce

0.030

0.015

Starts from contracting stage =
bounce = expansion

M. Novello, S. E. Perez Bergliaffa (2008), arXiv:
0802.1634

Both can be viewed as alternatives to,

Starts from Minkowski, empty
space, then energy density builds
up,

expansion accelerates.

Universe starts to expand,

Creminelli, Nicolis, Trincherini (2010), arXiv:
1007.0027

or completion of inflation.
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» Null energy condition (NEC)

Twntn” >0
for any null vector n*, such that n,n" =0

Quite robust

Implies a number of properties. For example: Penrose theorem.
Penrose’ 1965
In cosmology: if the NEC holds, and spatial curvature is negligible, there is

initial singularity
= No Bounce or Genesis.
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> Horndeski theory

S:/d4x\/jg(£2+£3+£4+£5),

£2 - F(ﬂ-7 X)J
L3 = K(m, X)Omr,
L4 = —Ga(m, X)R + 2Gax (m, X) [([On)° — ],

1 . .
Ls = Gs(m, X)G" 7, + §G5X [(Dﬂ')s — 30rmu " + 27w

where 7 is the scalar field, X = ¢""7 7, 7, = Oum, Ty = Vo Vp,
Or = g"'V,Vum, Gax = 0G4/0X, etc.

[5/30]



> Perturbations above FLRW background

ds® = dt* — a®(t) (da:2 +dy® + dz2) .

The decomposition of the perturbation of the metric h,, by helicities has

the following form

hoo = 2P

ho; = —9i8 + Z],

hij = —2W6y; — 20,0;F — (0W] + ;W) + R,
where ®, 8, ¥, E - scalar fields, ZF, W - transverse vector fields,

(0:;2F = o,WwF = 0), hz; - transverse traceless tensor. Also we denote

om = X.
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» The second-order action

Standart way:

Use the unitary gauge £ = x = 0.

Solve constraints on ¢ and (.

(¥

a2

(T

5@ _ /dt d*za® %T (hij)2 _ Fr +Gs (4)2 _Fs

Gr, Fr,Gs, Fs - functions depending on F, K, G4, G5 and their derivatives.
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> No-go theorem

To avoid ghost and gradient instabilities one requires Gr > 0, Gs > 0 and
Fr >0, Fs > 0.
JFs has a structure:

1d
Fs=oamt 7T
d
:>a§—a (Fs + Fr) > 0,
The point is that
_ a9t
57 207

is, therefore, a monotonously growing function, which means it must cross
zero at some point, but we have G2 in the numerator of &. These two
statements contradict each other.

Furthermore, at the point £ = 0 6 — oo which means that the background
fields H and 7 diverge, and that there is a singularity in the theory.
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> Ways to avoid No-go theorem
Beyond Horndeski theory:
L =Ly + Fu(r, X)GquD-EMIle/o?’l'yuﬂ'ﬂulﬂ‘w,//TI';pp/
+F5(, X)ewpoe“/y,plgl7r7#7r,u/7r;,,,,/7r;ppr7r;aa/,

then & = w and one can construct stable non-singular

solution.
S. Mironov, V. Rubakov, and V. Volkova (2018 - 2020), arXiv: 1807.08361, 1905.06249,
1910.07019.

Naive strong coupling:

t d§ @
/ Edt = / a(t) [Fr(t) + Fs(t)] dt < oo
This implies that Fr — 0, Fs — 0 as t — —o0; One also has
Gr — 0,Gs — 0 as t — —oo. In this case, the coefficients in the

quadratic action for perturbations about the classical solution tend to
zero as t — —oo. It has been shown that, if we consider the next order
of action for perturbations, the strong coupling can be avoided for a

specific choice of the parameters of theory.
Y. Ageeva, P. Petrov and V. Rubakov (2020-2022), arXiv: 2009.05071, 2003.01202, 2104.13412

[9/30]



The quadratic action for the scalar perturbations has the form

2 2 2
S(2>:/dtd3xa3<A1\I/2+A (i‘l’) + A3 ®% + Ay @e + A5 O 6;5
=3 ?2 ?2
Vv \I/
+ Ag @ +A<)X 5+A10X‘I’+A11 dx
V2 ?2 ?
+A12 x azﬁ—ﬁ-x‘hsx + A X+ As ( a;() + A7 Dx

+A18 Uy + Ao Ux + A X2)

where Ay = 6, Ag = 30, and E = 0 - partial gauge fix.
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> Gauge invariant variables

This action is invariant with respect to small coordinate transformations:
ot — ot — ¢,
where &# = (50, &+ 6ijaj£S)T. In which the fields change as:
® — d+&y, B — B—Eo+a’s, X — x+&owr, ¥ — U+&H, E — E—Es.

The action can be rewritten in explicitly gauge-invariant form by
introducing new variables (Bardeen variables):

X:x+#(%+E>7

a

y:\P+H(%+E>,
a

_o 28 ¢

2f¢+&[ +4.

a2
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» Three variables action

In terms of these variables, the action will take the form

?Zy

G N\ 2
S<2>:/dtd5m3 <A1 (y) + A, Y ?y + A3 22+ A ZY + A7 2

2X ?2 2
+As Z + A1 XY+ Ay ZX + A1 X y+A14( )

ﬁ»c)

+A1s + A7 ZX +A13 XY + A20X2)

At this point it is clearly seen that the field Z is non-dynamic and we can
derive a Z—constraint which has the following form:

1 ( ?2 _A8?2

A A X — A1 X
2A3 + 34,V — Ay 17>

We used that Ag = —3A4.
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> Brief summary

Due to the following relations for the coefficients:

3 1
Az = —A4H — - A
3= 544 B 117,
Our options:
Ay #0 c2, = Fs/Gs
A =0 T #0 no dynamics in scalar sector
e 7=0,H=0 =1

Thus, we obtained that A4 = 0 everywhere, always leads to a stable
solution in the scalar perturbation sector. In the case of non-trivial field 7
there are no dynamical scalar perturbations, and thus the stability
condition does not arise at all, and in the case of a static background field
7, we obtain a scalar perturbation with the sound speed squared ¢Z, = 1.
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> Reconstruction of Lagrangian functions
Without loss of generality we choose the following form of the scalar field
w(t) =t,

so that X = 1. To reconstruct the theory which corresponds some solution
we use the following ansatz for the Lagrangian functions
F(m, X) = fo(m) + fi(r) - X,
K(ﬂ',X) = k’l(ﬂ') -X,
1

Ga(m, X) = 5.

We are interested to consider the case G4 = const, which corresponds to
GR.
Only the equations of motion and the condition A4 = 0 remain as possible

constraints:
fo=-H,
fr=-3H%
k1= H.
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> Bouncing solution

Hubble parameter can be choosen in the following form for the case of the

bounce:
t

Hit) = ——

®) 3 (12 +t2)’
so that

2, 2\
a(t) = (7" +t°)°,
and the bounce occurs at ¢ = 0. In what follows we take 7 > 1 to make this
scale safely greater than Planck time. The parameter 7 determines the
duration of the bouncing stage.
Corresponding Lagrangian reads
w? — 12 X X

1
L= - Or + - R.
3(2 1) (2 im2)2 3P+ 2
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Hubble parameter H(t), scale factor a(t) and the Lagrangian functions fo(t), f1(¢) of
the bouncing scenario with parameter 7 = 25 (recall that ki (t) = H(t)).
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» Anisotropic Bianchi I background

Background metric:

ds® = dt* — (az(t)d:c2 + b (t)dy® + c2(t)dz2) .

The decomposition of metric perturbations h,, into helicity components in

this case has the form

hoo = 2P
hoi = —0:8+ Z7,
H,
hij = _Qﬁ‘l’gij —20;0;F — (&'W]-T 4F 8jWiT) 4 h?;-,

where @, 8, U, E - scalar fields, H; - Hubble parametres(i = a, b, ¢) and
1
H = 3 (Ho + Hy + Ho), ZE W - are transverse vector fields,

(&ZiT =Wl = 0), hg;- - is transverse traceless tensor.
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» The second-order action

Then the second-order action for scalar sector has the form:

<2>—/dxabc< Alz\l/q/Jr > AT;AT + AzD?

i=a,b,c
1#j#k
@ (A5028) + 45 3 i (A28 +226) + @ () + 2 e D0 AT (¥, + W)
i=a,b,c i=a,b,c
i 7k iAiFk

+® (A} Azx) +% (45428) + x (Alo¥:) + A ®x + x (41,476)

+ XZ Azfg, (A7, + A2W;) + A14(X) + Al (Aix)® + A17®x + X (Alig‘i’i)
ij

+ Asox? + = Y BUw; -, (B‘”’A26 + B“CA26) L, (Babagﬁ + Bb°A§,3>
i,j=a,b,c
i

L0, (B“Afcﬁ - BbCAjﬂ) > ,

[18/30]



> The stability of the Bounce solution with respect to
small anisotropy

We consider the action in the unitary gauge x = 0 and direct the
momentum & along the x-axis, so k = (kz,0,0). Then

1 ..
§® — /dm abe ( g A1 D Wil — Ak W, + A3® + Ak’ D
2]
+ Asfha” (W + 0. ) + @ (ARD;) + Ar®k,” (U + W)
41 3 B, - k2B (B“b\llb + B*w ) >
2 J T c

i,j=a,b,c
i#]
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After removing the constraints, we get the following action on the ¥

variable
. k2
S(2>:/dtd3xabc<gs( ) + M¥ + Fs— )
where
2 AsA? _ 2 2 A _ _ 2
=Z Hy+ He )i — —— (A9 H, + A% Hy+ H.) + A1 HyH,,
Gs 9(A2)2(b+ ) 3Aw( o+ AiH.) (Hy + He) + S AuH,

Fs = —2A:H,H. —L(HHH) A LA (Hp — H2) (Hy — H.)
9a® dt 943 VP e o
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» Anisotropic bounce

w2 — 72 X X 1
= = + Or+ =R.
3(r2+72)? (124 a2)®  3(r%+7?) g

Anisotropic bounce:

- t « - t B « H. — t
TR (e T P48 (2P T (P +P)
Here the parameter 7 defines the bounce amplitude and « the degree of
deviation from the isotropic case

— Ha(t)
0041 —— Hyt)
— Hdt)
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To analyze the stability of the scalar field, we numerically plot the square of
the speed of sound c%:
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The square of the speed of sound c%, when we choose a@ = 0.1, 7 = 10. In this case, the
square of the speed of sound will have at least 2 symmetric singular points and tends to

0 as univerce becomes isotropic.

[22/30]



Thank you for your attention!
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A combination of Einstein equations (spatially flat):

dH
= 74
= 7G(p + p)

p = Too = energy density; Ti; = 0;;p = effective pressure.

The Null Energy Condition:
Tywntn” > 0,n" = (1,1,0,0) = p+p > 0= dH/dt <0,

Hubble parameter was greater early on. No bounce

Another side of the NEC: Covariant energy-momentum conservation:

dp
5 = —SH(p+p)

NEC: energy density decreases during expansion, except for p = —p,
cosmological constant. No Genesis
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> An example of an attempt to violate the NEC

Let’s consider Minkowski background with one scalar field 7, a spatially
homogeneous classical solution 7¢(t) may or may not be pathological. The
pathology, if any, shows up in the behavior of small perturbations about
this background, m = 7. + x. Assuming that the linearized field equation for
x is of the second order in derivatives, the quadratic Lagrangian for x is
always given by

1. 1 1
LY = §UX2 -3V @ix)* - §WX2

Rubakov V A "The Null Energy Condition and its violation"Phys. Usp. 57 128-142 (2014)
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The dispersion relation is

Uw? =Vp>+ W,

Stable background: U > 0,V > 0, W > 0 energy density for
perturbations

1, 1 1
T = UXC + 5V (0007 + 5Wx® > 0

V < U - subluminal speed - OK

V' > U - super-luminal speed - theory cannot be UV-completed in a
Lorentz- invariant way.

U =V - potentially problematic.

U >0,V >0,WW <0 - Tachyonic instability.

U>0,V<0orU <0,V >0 - Gradient instability.
U <0,V <0 - Ghost instability.

[26/30]



> Only Ay = 0 case

After integrating out Z, introducing

_ 3A1 Ay — 245043
T 4A1A3 — 94,2

¢=Y+nX,

and integrating out X variable, we get the following action:

(Y) _1ae(F9)

a? 9 Az at

5@ = /dtdea?’ Ao

which means the absence of dynamics of the field (.
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> Additional options

From the view of the Z—constraint,

1 < ?2 7A8?22X

Z=

oA, +3A4Y — A X — A17X>

we can also distinguish the case A3 = 0 as a singular point. By reason of

the following ratios on the coefficients
3 1 .
A3 = §A4H — §A4117T7

we have two options: A4 =0,A41; =0 and A4 = 0,7 = 0.
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» A4:0,A11 =0

In this case, the Z—constraint gives us the condition:
A7
X =—-——
As Y
Which brings the action into the following form:

S@ — /dtdgza3 m)>

where
m = (Some VERY big expression)
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» A4:O,7'r=0

In this case, the condition A4 = 0 takes the form of:
G4H =0

For A4 = 0 it is also necessary to impose the condition H = 0. And the

action takes the form:

?y)

S® = /dtd3x a® | Gs (y) + mY? ]'"s(

Where Fs = Gs The case of the Minkowski space in GR (G4 = %) is a
special case of this solution.

[30/30]



