Stability of cosmological solutions in Horndeski theory with respect to background anisotropy

ArXiv: 2212.03285, 2305.19171
by A. Shtennikova (INR RAS \& ITMP MSU)
on QUARKS'24
24.05.2024

» Some problems of Inflation

* η-problem. In large field models of inflation, the inflaton has to traverse a distance in field space larger than the Planck mass $M_{p l}$ in natural units. This has been argued to be problematic, since non-renormalizable quantum corrections to the field's action arise. In the absence of functional fine-tuning or additional symmetries, inflation would be spoiled;
* The presence of eternal inflation in almost all proposals has been argued to lead to a possible loss of predictability due to our inability to prescribe a unique measure: this is the so-called measure problem.
* Inflation does not provide a theory of initial conditions that would explain why the inflaton field starts out high in its potential.
A. Linde (2014), 1402.0526

» Alternative scenarios

Bounce

Starts from contracting stage \Rightarrow bounce \Rightarrow expansion
M. Novello, S. E. Perez Bergliaffa (2008), arXiv: 0802.1634

Genesis

Starts from Minkowski, empty space, then energy density builds up, Universe starts to expand, expansion accelerates.

Creminelli, Nicolis, Trincherini (2010), arXiv: 1007.0027

Both can be viewed as alternatives to, or completion of inflation.

» Null energy condition (NEC)

$$
T_{\mu \nu} n^{\mu} n^{\nu} \geq 0
$$

for any null vector n^{μ}, such that $n_{\mu} n^{\mu}=0$

* Quite robust
* Implies a number of properties. For example: Penrose theorem.

In cosmology: if the NEC holds, and spatial curvature is negligible, there is initial singularity
\Rightarrow No Bounce or Genesis.

» Horndeski theory

$$
\begin{aligned}
& S=\int \mathrm{d}^{4} x \sqrt{-g}\left(\mathcal{L}_{2}+\mathcal{L}_{3}+\mathcal{L}_{4}+\mathcal{L}_{5}\right) \\
& \mathcal{L}_{2}=F(\pi, X) \\
& \mathcal{L}_{3}=K(\pi, X) \square \pi \\
& \mathcal{L}_{4}=-G_{4}(\pi, X) R+2 G_{4 X}(\pi, X)\left[(\square \pi)^{2}-\pi_{; \mu \nu} \pi^{; \mu \nu}\right] \\
& \mathcal{L}_{5}=G_{5}(\pi, X) G^{\mu \nu} \pi_{; \mu \nu}+\frac{1}{3} G_{5 X}\left[(\square \pi)^{3}-3 \square \pi \pi_{; \mu \nu} \pi^{; \mu \nu}+2 \pi_{; \mu \nu} \pi^{; \mu \rho} \pi_{; \rho}{ }^{\nu}\right]
\end{aligned}
$$

where π is the scalar field, $X=g^{\mu \nu} \pi_{, \mu} \pi_{, \nu}, \pi_{, \mu}=\partial_{\mu} \pi, \pi_{; \mu \nu}=\nabla_{\nu} \nabla_{\mu} \pi$, $\square \pi=g^{\mu \nu} \nabla_{\nu} \nabla_{\mu} \pi, G_{4 X}=\partial G_{4} / \partial X$, etc.

» Perturbations above FLRW background

$$
d s^{2}=d t^{2}-a^{2}(t)\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

The decomposition of the perturbation of the metric $h_{\mu \nu}$ by helicities has the following form

$$
\begin{aligned}
& h_{00}=2 \Phi \\
& h_{0 i}=-\partial_{i} \beta+Z_{i}^{T} \\
& h_{i j}=-2 \Psi \delta_{i j}-2 \partial_{i} \partial_{j} E-\left(\partial_{i} W_{j}^{T}+\partial_{j} W_{i}^{T}\right)+h_{i j}^{T},
\end{aligned}
$$

where Φ, β, Ψ, E - scalar fields, Z_{i}^{T}, W_{i}^{T} - transverse vector fields, $\left(\partial_{i} Z_{i}^{T}=\partial_{i} W_{i}^{T}=0\right), h_{i j}^{T}$ - transverse traceless tensor. Also we denote $\delta \pi=\chi$.

» The second-order action

Standart way:

* Use the unitary gauge $E=\chi=0$.
* Solve constraints on Φ and β.

$$
S^{(2)}=\int \mathrm{d} t \mathrm{~d}^{3} x a^{3}\left[\frac{\mathcal{G}_{T}}{2}\left(\dot{h}_{i j}\right)^{2}-\mathcal{F}_{T} \frac{\left(\vec{\nabla} h_{i j}\right)^{2}}{a^{2}}+\mathcal{G}_{S}(\dot{\zeta})^{2}-\mathcal{F}_{S} \frac{(\vec{\nabla} \zeta)^{2}}{a^{2}}\right]
$$

$\mathcal{G}_{T}, \mathcal{F}_{T}, \mathcal{G}_{S}, \mathcal{F}_{S}$ - functions depending on F, K, G_{4}, G_{5} and their derivatives.

» No-go theorem

To avoid ghost and gradient instabilities one requires $\mathcal{G}_{T}>0, \mathcal{G}_{S}>0$ and $\mathcal{F}_{T}>0, \mathcal{F}_{S}>0$.
\mathcal{F}_{S} has a structure:

$$
\begin{gathered}
\mathcal{F}_{S}=\frac{1}{a} \frac{\mathrm{~d}}{\mathrm{~d} t} \xi-\mathcal{F}_{T} \\
\Rightarrow \frac{d}{d t} \xi=a \cdot\left(\mathcal{F}_{S}+\mathcal{F}_{T}\right)>0,
\end{gathered}
$$

The point is that

$$
\xi=\frac{a \mathcal{G}_{T}^{2}}{2 \theta},
$$

is, therefore, a monotonously growing function, which means it must cross zero at some point, but we have \mathcal{G}_{T}^{2} in the numerator of ξ. These two statements contradict each other.
Furthermore, at the point $\xi=0 \theta \rightarrow \infty$ which means that the background fields H and π diverge, and that there is a singularity in the theory.

Ways to avoid No-go theorem

1. Beyond Horndeski theory:

$$
\begin{aligned}
\mathcal{L} & =\mathcal{L}_{H}+F_{4}(\pi, X) \epsilon^{\mu \nu \rho} \epsilon_{\sigma} \epsilon^{\mu^{\prime} \nu^{\prime} \rho^{\prime} \sigma} \pi_{, \mu} \pi_{, \mu^{\prime}} \pi_{; \nu \nu^{\prime}} \pi_{; \rho \rho^{\prime}} \\
& +F_{5}(\pi, X) \epsilon^{\mu \nu \rho \sigma} \epsilon^{\mu^{\prime} \nu^{\prime} \rho^{\prime} \sigma^{\prime}} \pi_{, \mu} \pi_{, \mu^{\prime}} \pi_{; \nu \nu^{\prime}} \pi_{; \rho \rho^{\prime}} \pi_{; \sigma \sigma^{\prime}}
\end{aligned}
$$

then $\xi=\frac{a \mathcal{G}_{T}\left(\mathcal{G}_{T}+D\right)}{2 \theta}$ and one can construct stable non-singular solution.
S. Mironov, V. Rubakov, and V. Volkova (2018-2020), arXiv: 1807.08361, 1905.06249, 1910.07019.
2. Naive strong coupling:

$$
\int_{-\infty}^{t} \frac{d \xi}{d t} d t=\int_{-\infty}^{t} a(t)\left[\mathcal{F}_{T}(t)+\mathcal{F}_{S}(t)\right] d t<\infty
$$

This implies that $\mathcal{F}_{T} \rightarrow 0, \mathcal{F}_{S} \rightarrow 0$ as $t \rightarrow-\infty$; One also has $\mathcal{G}_{T} \rightarrow 0, \mathcal{G}_{S} \rightarrow 0$ as $t \rightarrow-\infty$. In this case, the coefficients in the quadratic action for perturbations about the classical solution tend to zero as $t \rightarrow-\infty$. It has been shown that, if we consider the next order of action for perturbations, the strong coupling can be avoided for a specific choice of the parameters of theory.
Y. Ageeva, P. Petrov and V. Rubakov (2020-2022), arXiv: 2009.05071, 2003.01202, 2104.13412
» $\theta=0$

The quadratic action for the scalar perturbations has the form

$$
\begin{aligned}
S^{(2)} & =\int \mathrm{d} t \mathrm{~d}^{3} x a^{3}\left(A_{1} \dot{\Psi}^{2}+A_{2} \frac{(\vec{\nabla} \Psi)^{2}}{a^{2}}+A_{3} \Phi^{2}+A_{4} \Phi \frac{\vec{\nabla}^{2} \beta}{a^{2}}+A_{5} \dot{\Psi} \frac{\vec{\nabla}^{2} \beta}{a^{2}}\right. \\
& +A_{6} \Phi \dot{\Psi}+A_{7} \Phi \frac{\vec{\nabla}^{2} \Psi}{a^{2}}+A_{8} \Phi \frac{\vec{\nabla}^{2} \chi}{a^{2}}+A_{9} \dot{\chi} \frac{\vec{\nabla}^{2} \beta}{a^{2}}+A_{10} \chi \ddot{\Psi}+A_{11} \Phi \dot{\chi} \\
& +A_{12} \chi \frac{\vec{\nabla}^{2} \beta}{a^{2}}+A_{13} \chi \frac{\vec{\nabla}^{2} \Psi}{a^{2}}+A_{14} \dot{\chi}^{2}+A_{15} \frac{(\vec{\nabla} \chi)^{2}}{a^{2}}+A_{17} \Phi \chi \\
& \left.+A_{18} \dot{\Psi} \chi+A_{19} \Psi \chi+A_{20} \chi^{2}\right)
\end{aligned}
$$

where $A_{4}=\theta, A_{6}=3 \theta$, and $E=0-$ partial gauge fix.

» Gauge invariant variables

This action is invariant with respect to small coordinate transformations:

$$
x^{\mu} \rightarrow x^{\mu}-\xi^{\mu},
$$

where $\xi^{\mu}=\left(\xi_{0}, \xi_{T}^{i}+\delta^{i j} \partial_{j} \xi_{S}\right)^{\mathrm{T}}$. In which the fields change as:
$\Phi \rightarrow \Phi+\dot{\xi}_{0}, \quad \beta \rightarrow \beta-\xi_{0}+a^{2} \dot{\xi}_{S}, \quad \chi \rightarrow \chi+\xi_{0} \dot{\pi}, \quad \Psi \rightarrow \Psi+\xi_{0} H, \quad E \rightarrow E-\xi_{S}$.
The action can be rewritten in explicitly gauge-invariant form by introducing new variables (Bardeen variables):

$$
\begin{aligned}
& \mathcal{X}=\chi+\dot{\pi}\left(\frac{\beta}{a^{2}}+\dot{E}\right), \\
& \mathcal{Y}=\Psi+H\left(\frac{\beta}{a^{2}}+\dot{E}\right), \\
& \mathcal{Z}=\Phi+\frac{\mathrm{d}}{\mathrm{~d} t}\left[\frac{\beta}{a^{2}}+\dot{E}\right]
\end{aligned}
$$

» Three variables action

In terms of these variables, the action will take the form

$$
\begin{aligned}
S^{(2)} & =\int \mathrm{d} t \mathrm{~d}^{3} x a^{3}\left(A_{1}(\dot{\mathcal{Y}})^{2}+A_{2} \frac{(\vec{\nabla} \mathcal{Y})^{2}}{a^{2}}+A_{3} \mathcal{Z}^{2}+A_{6} \mathcal{Z} \dot{\mathcal{Y}}+A_{7} \mathcal{Z} \frac{\vec{\nabla}^{2} \mathcal{Y}}{a^{2}}\right. \\
& +A_{8} \mathcal{Z} \frac{\vec{\nabla}^{2} \mathcal{X}}{a^{2}}+A_{10} \mathcal{X} \ddot{\mathcal{Y}}+A_{11} \mathcal{Z} \dot{\mathcal{X}}+A_{13} \mathcal{X} \frac{\vec{\nabla}^{2} \mathcal{Y}}{a^{2}}+A_{14}(\dot{\mathcal{X}})^{2} \\
& \left.+A_{15} \frac{(\vec{\nabla} \mathcal{X})^{2}}{a^{2}}+A_{17} \mathcal{Z X}+A_{18} \mathcal{X} \dot{\mathcal{Y}}+A_{20} \mathcal{X}^{2}\right)
\end{aligned}
$$

At this point it is clearly seen that the field Z is non-dynamic and we can derive a Z-constraint which has the following form:

$$
\mathcal{Z}=\frac{1}{2 A_{3}}\left(-A_{7} \frac{\vec{\nabla}^{2} \mathcal{Y}}{a^{2}}-A_{8} \frac{\vec{\nabla}^{2} \mathcal{X}}{a^{2}}+3 A_{4} \dot{\mathcal{Y}}-A_{11} \dot{\mathcal{X}}-A_{17} \mathcal{X}\right)
$$

We used that $A_{6}=-3 A_{4}$.

» Brief summary

Due to the following relations for the coefficients:

$$
A_{3}=\frac{3}{2} A_{4} H-\frac{1}{2} A_{11} \dot{\pi}
$$

Our options:

$A_{4} \neq 0$	$c_{\infty}^{2}=\mathcal{F}_{S} / \mathcal{G}_{S}$	
$A_{4} \equiv 0$	$\dot{\pi} \neq 0$	no dynamics in scalar sector
	$\dot{\pi}=0, H=0$	$c_{\infty}^{2}=1$

Thus, we obtained that $A_{4}=0$ everywhere, always leads to a stable solution in the scalar perturbation sector. In the case of non-trivial field π there are no dynamical scalar perturbations, and thus the stability condition does not arise at all, and in the case of a static background field π, we obtain a scalar perturbation with the sound speed squared $c_{\infty}^{2}=1$.

» Reconstruction of Lagrangian functions

Without loss of generality we choose the following form of the scalar field

$$
\pi(t)=t
$$

so that $X=1$. To reconstruct the theory which corresponds some solution we use the following ansatz for the Lagrangian functions

$$
\begin{aligned}
& F(\pi, X)=f_{0}(\pi)+f_{1}(\pi) \cdot X \\
& K(\pi, X)=k_{1}(\pi) \cdot X \\
& G_{4}(\pi, X)=\frac{1}{2}
\end{aligned}
$$

We are interested to consider the case $G_{4}=$ const, which corresponds to GR.
Only the equations of motion and the condition $A_{4}=0$ remain as possible constraints:

$$
\begin{aligned}
& f_{0}=-\dot{H}, \\
& f_{1}=-3 H^{2}, \\
& k_{1}=H .
\end{aligned}
$$

» Bouncing solution

Hubble parameter can be choosen in the following form for the case of the bounce:

$$
H(t)=\frac{t}{3\left(\tau^{2}+t^{2}\right)},
$$

so that

$$
a(t)=\left(\tau^{2}+t^{2}\right)^{\frac{1}{6}}
$$

and the bounce occurs at $t=0$. In what follows we take $\tau \gg 1$ to make this scale safely greater than Planck time. The parameter τ determines the duration of the bouncing stage.
Corresponding Lagrangian reads

$$
\mathcal{L}=\frac{\pi^{2}-\tau^{2}}{3\left(\tau^{2}+\pi^{2}\right)^{2}}-\frac{\pi^{2} X}{\left(\tau^{2}+\pi^{2}\right)^{2}}+\frac{\pi X}{3\left(\tau^{2}+\pi^{2}\right)} \square \pi+\frac{1}{2} R .
$$

Hubble parameter $H(t)$, scale factor $a(t)$ and the Lagrangian functions $f_{0}(t), f_{1}(t)$ of the bouncing scenario with parameter $\tau=25$ (recall that $k_{1}(t)=H(t)$).

» Anisotropic Bianchi I background

Background metric:

$$
d s^{2}=d t^{2}-\left(a^{2}(t) d x^{2}+b^{2}(t) d y^{2}+c^{2}(t) d z^{2}\right)
$$

The decomposition of metric perturbations $h_{\mu \nu}$ into helicity components in this case has the form

$$
\begin{aligned}
h_{00} & =2 \Phi \\
h_{0 i} & =-\partial_{i} \beta+Z_{i}^{T} \\
h_{i j} & =-2 \frac{H_{i}}{H} \Psi g_{i j}-2 \partial_{i} \partial_{j} E-\left(\partial_{i} W_{j}^{T}+\partial_{j} W_{i}^{T}\right)+h_{i j}^{T},
\end{aligned}
$$

where Φ, β, Ψ, E - scalar fields, H_{i} - Hubble parametres $(i=a, b, c)$ and $H=\frac{1}{3}\left(H_{a}+H_{b}+H_{c}\right), Z_{i}^{T}, W_{i}^{T}$ - are transverse vector fields, $\left(\partial_{i} Z_{i}^{T}=\partial_{i} W_{i}^{T}=0\right), h_{i j}^{T}$ - is transverse traceless tensor.

» The second-order action

Then the second-order action for scalar sector has the form:
$S^{(2)}=\int \mathrm{d} x a b c\left(\frac{1}{6} A_{1} \sum_{\substack{i \neq j}} \dot{\Psi}_{i} \dot{\Psi}_{j}+\frac{A_{2}}{2} \sum_{\substack{i=a, b, c \\ i \neq j \neq k}} \Delta_{i} \Psi_{j} \Delta_{i} \Psi_{k}+A_{3} \Phi^{2}\right.$
$+\Phi\left(A_{4}^{i} \Delta_{i}^{2} \beta\right)+A_{5} \sum_{\substack{i=a, b, c \\ i \neq j \neq k}} \dot{\Psi}_{i}\left(\Delta_{j}^{2} \beta+\Delta_{k}^{2} \beta\right)+\Phi\left(A_{6}^{i} \dot{\Psi}_{i}\right)+\frac{A_{7}}{2} \Phi \sum_{\substack{i=a, b, c \\ i \neq j \neq k}} \Delta_{i}^{2}\left(\Psi_{j}+\Psi_{k}\right)$
$+\Phi\left(A_{8}^{i} \Delta_{i}^{2} \chi\right)+\dot{\chi}\left(A_{9}^{i} \Delta_{i}^{2} \beta\right)+\chi\left(A_{10}^{i} \ddot{\Psi}_{i}\right)+A_{11} \Phi \dot{\chi}+\chi\left(A_{12}^{i} \Delta_{i}^{2} \beta\right)$
$+\chi \sum_{i, j} \frac{1}{2} A_{13}^{i j}\left(\Delta_{i}^{2} \Psi_{j}+\Delta_{j}^{2} \Psi_{i}\right)+A_{14}(\dot{\chi})^{2}+A_{15}^{i}\left(\Delta_{i} \chi\right)^{2}+A_{17} \Phi \chi+\chi\left(A_{18}^{i} \dot{\Psi}_{i}\right)$
$+A_{20} \chi^{2}+\frac{1}{2} \sum_{i, j=a, b, c} B^{i j} \Psi_{i} \dot{\Psi}_{j}-\Psi_{a}\left(B^{a b} \Delta_{y}^{2} \beta+B^{a c} \Delta_{z}^{2} \beta\right)+\Psi_{b}\left(B^{a b} \Delta_{x}^{2} \beta+B^{b c} \Delta_{z}^{2} \beta\right)$
$\left.+\Psi_{c}\left(B^{a c} \Delta_{x}^{2} \beta-B^{b c} \Delta_{y}^{2} \beta\right)\right)$,
where $\Psi_{i}=\bar{H}_{i} \Psi$ и $\bar{H}_{i}=H_{i} / H$.
» The stability of the Bounce solution with respect to small anisotropy

We consider the action in the unitary gauge $\chi=0$ and direct the momentum \bar{k} along the x -axis, so $\bar{k}=\left(k_{x}, 0,0\right)$. Then

$$
\begin{aligned}
& S^{(2)}=\int \mathrm{d} x a b c\left(\frac{1}{6} A_{1} \sum_{i \neq j} \dot{\Psi}_{i} \dot{\Psi}_{j}-A_{2} k_{x}^{2} \Psi_{b} \Psi_{c}+A_{3} \Phi^{2}+A_{4}^{a} k_{x}^{2} \Phi \beta\right. \\
& +A_{5} \beta k_{x}^{2}\left(\dot{\Psi}_{b}+\dot{\Psi}_{c}\right)+\Phi\left(A_{6}^{i} \dot{\Psi}_{i}\right)+A_{7} \Phi k_{x}^{2}\left(\Psi_{b}+\Psi_{c}\right) \\
& \left.+\frac{1}{2} \sum_{\substack{i, j=a, b, c \\
i \neq j}} B^{i j} \Psi_{i} \dot{\Psi}_{j}-k_{x}^{2} \beta\left(B^{a b} \Psi_{b}+B^{a c} \Psi_{c}\right)\right)
\end{aligned}
$$

After removing the constraints, we get the following action on the Ψ variable

$$
S^{(2)}=\int \mathrm{d} t \mathrm{~d}^{3} x a b c\left(\mathcal{G}_{S}(\dot{\Psi})^{2}+M \Psi^{2}+\mathcal{F}_{S} \frac{k_{x}^{2}}{a^{2}} \Psi^{2}\right)
$$

where

$$
\begin{aligned}
& \mathcal{G}_{S}=\frac{2}{9} \frac{A_{3} A_{1}^{2}}{\left(A_{4}^{x}\right)^{2}}\left(\bar{H}_{b}+\bar{H}_{c}\right)^{2}-\frac{2}{3} \frac{A_{1}}{A_{4}^{x}}\left(A_{4}^{y} \bar{H}_{b}+A_{4}^{z} \bar{H}_{c}\right)\left(\bar{H}_{b}+\bar{H}_{c}\right)+\frac{2}{3} A_{1} \bar{H}_{b} \bar{H}_{c} \\
& \mathcal{F}_{S}=-2 A_{2} \bar{H}_{b} \bar{H}_{c}-\frac{1}{9 a^{3}}\left(\bar{H}_{b}+\bar{H}_{c}\right)^{2} \frac{d}{d t}\left[\frac{A_{1}^{2} a^{3}}{A_{4}^{x}}\right]+\frac{A_{1}^{2}}{9 A_{4}^{x}}\left(\bar{H}_{b}^{2}-\bar{H}_{c}^{2}\right)\left(H_{b}-H_{c}\right)
\end{aligned}
$$

» Anisotropic bounce

$$
\mathcal{L}=\frac{\pi^{2}-\tau^{2}}{3\left(\tau^{2}+\pi^{2}\right)^{2}}-\frac{\pi^{2} X}{\left(\tau^{2}+\pi^{2}\right)^{2}}+\frac{\pi X}{3\left(\tau^{2}+\pi^{2}\right)} \square \pi+\frac{1}{2} R .
$$

Anisotropic bounce:
$H_{a}=\frac{t}{\left(\tau^{2}+t^{2}\right)}+\frac{\alpha}{\left(\tau^{2}+t^{2}\right)^{3 / 2}}, \quad H_{b}=\frac{t}{\left(\tau^{2}+t^{2}\right)}-\frac{\alpha}{\left(\tau^{2}+t^{2}\right)^{3 / 2}}, \quad H_{c}=\frac{t}{\left(\tau^{2}+t^{2}\right)}$.
Here the parameter τ defines the bounce amplitude and α the degree of deviation from the isotropic case

To analyze the stability of the scalar field, we numerically plot the square of the speed of sound c_{S}^{2} :

The square of the speed of sound c_{S}^{2}, when we choose $\alpha=0.1, \tau=10$. In this case, the square of the speed of sound will have at least 2 symmetric singular points and tends to 0 as univerce becomes isotropic.

Thank you for your attention!

* A combination of Einstein equations (spatially flat):

$$
\frac{d H}{d t}=-4 \pi G(\rho+p)
$$

$\rho=T_{00}=$ energy density; $T_{i j}=\delta_{i j} p=$ effective pressure.

* The Null Energy Condition:

$$
T_{\mu v} n^{\mu} n^{\nu} \geq 0, n^{\mu}=(1,1,0,0) \Longrightarrow \rho+p \geq 0 \Longrightarrow d H / d t \leq 0
$$

Hubble parameter was greater early on. No bounce

* Another side of the NEC: Covariant energy-momentum conservation:

$$
\frac{d \rho}{d t}=-3 H(\rho+p)
$$

NEC: energy density decreases during expansion, except for $p=-\rho$, cosmological constant. No Genesis

» An example of an attempt to violate the NEC

Let's consider Minkowski background with one scalar field π, a spatially homogeneous classical solution $\pi_{\mathrm{c}}(t)$ may or may not be pathological. The pathology, if any, shows up in the behavior of small perturbations about this background, $\pi=\pi_{\mathrm{c}}+\chi$. Assuming that the linearized field equation for χ is of the second order in derivatives, the quadratic Lagrangian for χ is always given by

$$
L_{\chi}^{(2)}=\frac{1}{2} U \dot{\chi}^{2}-\frac{1}{2} V\left(\partial_{i} \chi\right)^{2}-\frac{1}{2} W \chi^{2}
$$

Rubakov V A "The Null Energy Condition and its violation"Phys. Usp. 57 128-142 (2014)

The dispersion relation is

$$
U \omega^{2}=V \mathbf{p}^{2}+W
$$

1. Stable background: $U>0, V>0, W \geqslant 0$ energy density for perturbations

$$
T_{00}^{(2)}=\frac{1}{2} U \dot{\chi}^{2}+\frac{1}{2} V\left(\partial_{i} \chi\right)^{2}+\frac{1}{2} W \chi^{2}>0
$$

1.1 $V<U$ - subluminal speed - OK
1.2 $V>U$ - super-luminal speed - theory cannot be UV-completed in a Lorentz- invariant way.
1.3 $U=V$ - potentially problematic.
$1.4 U>0, V>0, W<0$ - Tachyonic instability.
2. $U>0, V<0$ or $U<0, V>0$ - Gradient instability.
3. $U<0, V<0$ - Ghost instability.
» Only $A_{4}=0$ case

After integrating out Z, introducing

$$
\zeta=\mathcal{Y}+\eta \mathcal{X}, \quad \eta=\frac{3 A_{11} A_{4}-2 A_{10} A_{3}}{4 A_{1} A_{3}-9 A_{4}{ }^{2}}
$$

and integrating out \mathcal{X} variable, we get the following action:

$$
S^{(2)}=\int \mathrm{d} t \mathrm{~d}^{3} x a^{3}\left(A_{2} \frac{(\vec{\nabla} \zeta)^{2}}{a^{2}}-\frac{1}{9} \frac{A_{1}^{2}}{A_{3}} \frac{\left(\vec{\nabla}^{2} \zeta\right)^{2}}{a^{4}}\right)
$$

which means the absence of dynamics of the field ζ.

» Additional options

From the view of the Z-constraint,

$$
\mathcal{Z}=\frac{1}{2 A_{3}}\left(-A_{7} \frac{\vec{\nabla}^{2} \mathcal{Y}}{a^{2}}-A_{8} \frac{\vec{\nabla}^{2} \mathcal{X}}{a^{2}}+3 A_{4} \dot{\mathcal{Y}}-A_{11} \dot{\mathcal{X}}-A_{17} \mathcal{X}\right)
$$

we can also distinguish the case $A_{3}=0$ as a singular point. By reason of the following ratios on the coefficients

$$
A_{3}=\frac{3}{2} A_{4} H-\frac{1}{2} A_{11} \dot{\pi}
$$

we have two options: $A_{4}=0, A_{11}=0$ and $A_{4}=0, \dot{\pi}=0$.
» $A_{4}=0, A_{11}=0$

In this case, the Z-constraint gives us the condition:

$$
\mathcal{X}=-\frac{A_{7}}{A_{8}} \mathcal{Y}
$$

Which brings the action into the following form:

$$
S^{(2)}=\int \mathrm{d} t \mathrm{~d}^{3} x a^{3} m \mathcal{Y}^{2}
$$

where

$$
m=(\text { Some VERY big expression })
$$

» $A_{4}=0, \dot{\pi}=0$

In this case, the condition $A_{4}=0$ takes the form of:

$$
G_{4} H=0
$$

For $A_{4}=0$ it is also necessary to impose the condition $H=0$. And the action takes the form:

$$
S^{(2)}=\int \mathrm{d} t \mathrm{~d}^{3} x a^{3}\left(\mathcal{G}_{S}(\dot{\mathcal{Y}})^{2}+m \mathcal{Y}^{2}-\mathcal{F}_{S} \frac{(\vec{\nabla} \mathcal{Y})^{2}}{a^{2}}\right)
$$

Where $\mathcal{F}_{S}=\mathcal{G}_{S}$ The case of the Minkowski space in GR $\left(G_{4}=\frac{1}{2}\right)$ is a special case of this solution.

