This work was supported by the Russian Science Foundation under grant no. 22-12-00253. https://rscf.ru/project/22-12-00253/

High-energy photonuclear interactions and muon content of extensive air showers

QUARKS'2024, Pereslavl-Zalessky 23/05/2024

Nickolay Martynenko^{1,2}, Grigory Rubtsov² and Sergey Troitsky^{2,1}

¹Faculty of Physics, Lomonosov MSU ²Institute for Nuclear Research, RAS

Muon puzzle

Muon content *z*-measure:

 $\ln N_{\mu}^{\exp} - \ln N_{\mu}^{\text{theor}}(\text{primary } p)$ $z = \frac{1}{\ln N_{\mu}^{\text{theor}}(\text{primary Fe}) - \ln N_{\mu}^{\text{theor}}(\text{primary } p)]}$

Expectation: 0 < z < 10 = pure protons1 = pure iron

In fact: z > 1 is observed sometimes! [arXiv:2105.06148v2]

Primary CR particle

secondaries: e, µ, etc.

Electromagnetic cascades

Dominant muon

producers:

 $\pi^+ \to \mu^+ + \nu_{\mu}$ $\pi^- \to \mu^- + \tilde{\nu}_{\mu}$

Dominant muon

producers:

Electromagnetic cascades?

Dominant muon

producers:

Photonuclear reaction!

$\gamma + A \rightarrow \pi + \ldots$

Photon+air (weighted) photonuclear cross-section

Systematic uncertainty: 1. asymptotic behavior

Systematic uncertainty: 2. mass number (A) dependence

Semi-analytical approach to study photonuclear cross-section models

$$\frac{dN_{\mu}}{dE_{\gamma}} = \sigma_{\gamma \text{ air}}(E_{\gamma})$$

- E_i primary photon energy
- E_{γ} (grand-)mother reaction energy
- $X \text{slant depth [g cm^{-2}]}$

10

• $f(E_{\gamma}, E_i, X)$

We assume that f does not depend on the photonuclear interaction model, unless the latter one significantly affects an electromagnetic shower development.

Parametrization of the universal function

 $f(E_{\gamma}, E_i, X) = \mathcal{N}(E_{\gamma}, E_i) \cdot p(X | X_{\max}(E_{\gamma}, E_i), E_{\gamma}) \cdot \Theta(E_i - E_{\gamma})$

 E_i — primary photon energy

 E_{γ} – (grand-)mother reaction energy

 $X - \text{slant depth } [g \text{ cm}^{-2}]$

11

 \mathcal{N} accounts for number of muons at maximum (by slant depth)

p describes the longitudinal profile (we assume generalized Gaisser—Hillas shape)

Parametrization of the universal function

Results: testing assumptions

Results: testing assumptions

Results: train set

Results: test set

Results: test set

Results: test set

Results: 'exotic' model

19

Results: 'exotic' model

20

Results: A-scaling* (GEANT4)

21

Results: A-scaling* (GEANT4)

Here one should be careful: our prediction works only for high-energy photonuclear reactions.

We observe an insignificant departure of simulation results from our prediction.

Thus lower-energy corrections (in particular, the contribution of the resonance region) are small enough.

This indicates that CONEX A-scaling is reasonable at near-resonance energies.

Summary

The developed analytical technique allows to study a wide range of photonuclear cross-section models in terms of photon-initiated EAS muon **content** without using simulations!

By-product: the code made by GR and NM is compatible with almost arbitrary EGS4 cross-section modification, which now can be easily implemented to **CONEX and CORSIKA (see e.g. Andrey** Sharofeev's talk on LIV effects in EAS).

Work in progress...

 Account for higher-order corrections. Probably this can be done using electromagnetic cascade equations. This would allow to describe even more extreme cross-section modifications and UHE regime analytically.

 Explore the spectrum and spatial structure of additional muons. Which fraction of them is actually detectable?

 Use toy-model of hadron EAS to predict the number of additional muons(?): results are sufficiently modeldependent...

