Cosmological constraints from eFEDS spectral data

Artem Diachenko

MSU & INR RAS

24.05.2024

Introduction

- Matter distribution is very sensitive to a variety of cosmological parameters
- Galaxy clusters are powerful cosmological probes
- We can't measure the masses of clusters directly, so we have to rely on other observables

Introduction

- N. Clerc et al. 2012¹ proposed a way of cosmological analysis that utilizes X-ray count-rate - hardness ratio diagram
- The idea is that even in shallow surveys, substantial information on cluster temperature is present in the raw X-ray data
- The goal of this study is to adapt CR-HR method to eFEDS data and compare the obtained cosmological constraints with ²

¹N. Clerc et al. 2012, MNRAS 423, 3545–3560 ²Chiu, I. N., et al. 2023, MNRAS, 522, 1601

Observables

Data set

- This work uses a sample of clusters in *eROSITA* Final Equatorial Depth Survey (eFEDS) ³
- \blacktriangleright This work utilizes spectroscopic measurements of ${\rm CR}_{[1-2]}, {\rm CR}_{[0.5-1]}$ ⁴
- A cut in cluster redshift is applied: 0.1 < z < 1.2

f_{cont} cut reduces contamination due to point sources:
 f_{cont} < 0.3

- clusters with $\sigma_{\ln HR} = \sqrt{\left(\frac{\sigma_{CR}_{[1-2]}}{CR_{[1-2]}}\right)^2 + \left(\frac{\sigma_{CR}_{[0.5-1]}}{CR_{[0.5-1]}}\right)^2} > 1$ are excluded
- Final cluster sample contains 448 sources

³A. Liu, et al. A&A 661, A2 (2022)

⁴T. Liu et al. A&A 661, A5 (2022)

$\ln {\rm HR} \ {\rm modelling}$

- The spectra are modelled with XSPEC and convolved with eROSITA response matrices
- \blacktriangleright ICM emission is modelled with thermal plasma model apec having metal abundance of $0.3 Z_{\odot}$
- ► The Galactic hydrogen absorption is modeled using tbabs with column density of $n_H = 3.5 \times 10^{20} \text{cm}^{-2}$

$\ln \mathrm{HR}$ modelling

The accuracy of the model is tested on a subsample of 64 clusters with reliable T measurements

$$\chi^2/64 = 0.953$$

Normalized residuals histogram

T - M scaling relation

$$\frac{T}{\text{keV}} = A_T \left(\frac{M_{500}}{2.4 \cdot 10^{14} h^{-1} M_{\odot}} \right)^{B_T + \delta_T \ln\left(\frac{1+z}{1.35}\right)} \left(\frac{E(z)}{E(0.35)} \right)^{\frac{2}{3}} \left(\frac{1+z}{1.35} \right)^{\gamma_T}$$

$$\blacktriangleright E(z) = H(z)/H_0$$

- \blacktriangleright σ_T log-normal intrinsic scatter
- M₅₀₀, is defined by a sphere where the interior mass density is 500 times the cosmic critical density ρ_c(z) at the cluster redshift z

CR - M scaling relation

$$\frac{\mathrm{CR}}{\mathrm{cts/s}} = A_{\mathrm{CR}} \left(\frac{M_{500}}{1.4 \cdot 10^{14} h^{-1} M_{\odot}} \right)^{B_{\mathrm{CR}} + \delta_{\mathrm{CR}} \ln \left(\frac{1+z}{1.35}\right)} \left(\frac{E(z)}{E(0.35)} \right)^{2} \left(\frac{1+z}{1.35} \right)^{\gamma_{\mathrm{CR}}} \left(\frac{D_{L}(0.35)}{D_{L}(z)} \right)^{2} b(M_{500}, z)$$

- \blacktriangleright $D_L(z)$ luminosity distance
- \blacktriangleright $\sigma_{\rm CR}$ intrinsic scatter
- ▶ $b(M_{500}, z)$ count-rate bias

CR - M scaling relation

$$\ln(b(M_{500}, z)) = A_b + \left(B_b - \delta_b \ln\left(\frac{z}{0.35}\right)\right) \ln\left(\frac{M_{500}}{1.4 \cdot 10^{14} h^{-1} M_{\odot}}\right) + \gamma_b \ln\left(\frac{z}{0.35}\right)$$
$$A_b, \ B_b, \ \delta_b, \ \gamma_b \text{ were calibrated by simulations } {}^5:$$

$$A_b = 0.18 \pm 0.02 B_b = -0.16 \pm 0.03 \delta_b = -0.015 \pm 0.05 \gamma_b = 0.42 \pm 0.03$$

⁵Chiu et al. 2022, A&A 661, A11

• $\frac{\mathrm{d}n}{\mathrm{d}M}$ - halo mass function ⁶

$$\frac{\mathrm{d}^{3}N}{\mathrm{d}z\,\mathrm{d}\mathrm{CR}\,\mathrm{d}\ln\mathrm{HR}} = \int \mathrm{d}M \frac{\mathrm{d}n}{\mathrm{d}M} \,\frac{\mathrm{d}^{2}V}{\mathrm{d}z\mathrm{d}\Omega} \,\Delta\Omega \,P(\mathrm{CR},\ln\mathrm{HR}|M,z,\vec{p})$$

- $\frac{\mathrm{d}^2 V}{\mathrm{d} z \mathrm{d} \Omega}$ comoving volume
- $\Delta\Omega$ survey solid angle
- \blacktriangleright \vec{p} model parameters

⁶Bocquet S., Saro A., Dolag K., Mohr J., 2016, MNRAS, 456, 2361

$$P(\operatorname{CR}, \ln \operatorname{HR}|M, z, \vec{p}) = \int d\widehat{\operatorname{CR}} dT P(\operatorname{CR}|\widehat{\operatorname{CR}}, z) P(\ln \operatorname{HR}|\operatorname{CR}, T, z) P(\widehat{\operatorname{CR}}, T|M, z, \vec{p})$$

- ► P(CR|CR, z) P(In HR|CR, T, z) scatter of CR and In HR due to the measurement error
- ▶ $P(\widehat{CR}, T|M, z, \vec{p})$ describes the intrinsic scatter of T and CR

 $P(CR|\widehat{CR}, z)$ - normal distribution with $\mu = \widehat{CR}$ and $\sigma = \delta_{CR}(CR, z)$ $P(\ln HR|CR, T, z)$ - normal distribution with $\mu = \ln HR(z, T)$ and

 $\sigma = \delta_{\ln HR}(CR, z)$ - normal distribution with $\mu = \ln HR(z, T)$ and $\sigma = \delta_{\ln HR}(CR, z)$

$$\delta_{\rm CR}({\rm CR}, z) = 0.0154 \left(\frac{{\rm CR}}{0.1 {\rm cts/s}}\right)^{0.576} \left(\frac{z}{0.35}\right)^{-0.079}$$
$$\delta_{\rm ln\,HR}({\rm CR}, z) = 0.35 \left(\frac{{\rm CR}}{0.1 {\rm cts/s}}\right)^{-0.6}$$

 $P(\widehat{CR}, T|M, z, \vec{p})$ - bivariate log-normal distribution with covariance matrix:

$$\begin{pmatrix} \sigma_{\rm CR}^2 & \rho \sigma_{\rm CR} \sigma_T \\ \rho \sigma_{\rm CR} \sigma_T & \sigma_T^2 \end{pmatrix}$$

Completeness function

$$C(\mathrm{CR}, z) = \frac{1}{2} \left(1 + \operatorname{erf} \frac{\ln \mathrm{CR} - \ln \mathrm{CR}_{50, z}}{s_{\mathrm{CR}}} \right)$$
$$\mathrm{CR}_{50, z} = \mathrm{CR}_{50} \left(\frac{D_A(z)}{D_A(0.35)} \right)^{\gamma_z}$$

D_A(z) - angular diameter distance
 CR₅₀, s_{CR} - were measured in: Chiu, I. N., et al. 2023

$$\label{eq:CR50} \begin{split} {\rm CR}_{50} &= 0.0624 \pm 0.0057 \\ s_{\rm CR} &= 0.6514 \pm 0.1687 \end{split}$$

Differential number count is modified:

$$\frac{\mathrm{d}^3 N}{\mathrm{d} z \, \mathrm{d} \mathrm{CR} \, \mathrm{d} \ln \mathrm{HR}} \to C(\mathrm{CR}, z) \times \frac{\mathrm{d}^3 N}{\mathrm{d} z \, \mathrm{d} \mathrm{CR} \, \mathrm{d} \ln \mathrm{HR}}$$

Likelihood

Probability of observing N_i clusters in bin *i*: $P_i = \frac{n_i^{N_i}}{N_i!}e^{-n_i}$

where $n_i = \iiint_i \frac{\mathrm{d}^3 N}{\mathrm{d} z \, \mathrm{d} \mathrm{CR} \, \mathrm{d} \ln \mathrm{HR}} \mathrm{d} z \, \mathrm{d} \mathrm{CR} \, \mathrm{d} \ln \mathrm{HR}$

$$\ln L = \sum_i (N_i \ln n_i - n_i)$$

Fine binning limit $(N_i = \{0, 1\})$:

$$\ln L = \sum_{i} \ln \frac{\mathrm{d}^{3}N}{\mathrm{d}z\mathrm{d}\ln CR\mathrm{d}\ln HR} - \int_{0.1}^{1.2} \mathrm{d}z \int_{0}^{+\infty} \mathrm{dCR} \int_{-\infty}^{+\infty} \mathrm{d}\ln \mathrm{HR} \frac{\mathrm{d}^{3}N}{\mathrm{d}z\,\mathrm{dCR}\,\mathrm{d}\ln\mathrm{HR}}$$

Priors

Cosmology		[CR - <i>M</i> scaling relation	
Parameter	Prior		Parameter	Prior
Ω_m	$\mathcal{U}[0.1, 0.5]$		$A_{ m CR}$	$\mathcal{N}(0.13, 0.03^2)$
σ_8	$\mathcal{U}[0.6, 1.2]$		$B_{ m CR}$	$\mathcal{N}(1.65, 0.2^2)$
Ω_b	$\mathcal{U}[0.042, 0.049]$		$\gamma_{ m CR}$	$\mathcal{N}(0, 1.5^2)$
H_0	$\mathcal{U}[50,90]$		$\delta_{ m CR}$	$\mathcal{N}(0, 1.5^2)$
n _s	$\mathcal{U}[0.92,1]$		$\sigma_{ m CR}$	$\mathcal{N}(0.3, 0.08^2)$
T - M scaling relation			Count-rate bias	
AT	$\mathcal{U}[0.525]$		A _b	$\mathcal{N}(0.18, 0.02^2)$
BT	$\mathcal{U}[0,5]$		B _b	$\mathcal{N}(-0.16, 0.03^2)$
γ_T	$\mathcal{U}[-3,3]$		γ_{b}	$\mathcal{N}(0.42, 0.03^2)$
δ_T	$\mathcal{U}[-3,3]$		δ_b	$\mathcal{N}(-0.015, 0.05^2)$
σ_T	$\mathcal{U}[0.05, 0.8]$		Completene	ess function
Correlated scatter			CR ₅₀	$\mathcal{N}(0.062, 0.0057^2)$
ρ	$\mathcal{U}(-0.9, 0.9)$		$s_{ m CR}$	$\mathcal{N}(0.651, 0.168^2)$
			γ_{z}	$\mathcal{U}[-3,3]$

Results

$$\Omega_m = 0.230^{+0.066}_{-0.051}$$
$$\sigma_8 = 0.877^{+0.085}_{-0.076}$$
$$S_8 = \sigma_8 \left(\frac{\Omega_m}{0.3}\right)^{0.3} = 0.804^{+0.052}_{-0.037}$$

eFEDS, Chiu et al. 2023 Cluster Cluster Abundance + Abundance WL Calibration $0.230^{+0.063}_{-0.069}$ $0.245^{+0.048}_{-0.058}$ Ω_m $0.867^{+0.073}_{-0.082}$ $0.833^{+0.075}_{-0.063}$ σ_8 $0.792^{+0.049}_{-0.036}$ $0.791^{+0.028}_{-0.031}$ S_8

The goodness of fit

- Each observable dimension is binned in 10 bins
- Since the numbers of counts per bin is low, χ^2 cannot be used
- Modified Cash-statistic (Kaastra J. S., 2017, A&A, 605, A51):

$$C = 2\sum_{i=1}^{n} s_i - N_i + N_i \ln(N_i/s_i)$$

N_i - observed number of clusters in *i*-th bin, s_i - predicted number of clusters

$$\langle C \rangle = \sum_{i=1}^{n} 2 \sum_{k=0}^{\infty} P_k(s_i)(s_i - k + k \ln(k/s_i))$$

 \triangleright $P_k(s_i)$ - Poisson distribution

The goodness of fit

$$C_{observed} = 401$$

 $\langle C \rangle = 392 \qquad \Delta C^2 = 25^2$

CR - M scaling relation

		eFEDS,
	This work	Chiu et al.
A _{CR}	$0.130\substack{+0.029\\-0.03}$	$2023 \\ 0.133^{+0.026}_{-0.020}$
B _{CR}	$1.871\substack{+0.163\\-0.155}$	$1.86\substack{+0.20 \\ -0.15}$
$\gamma_{\it CR}$	$-1.14\substack{+0.498\\-0.526}$	$-0.83\substack{+0.44\\-0.50}$
δ_{CR}	$-0.629\substack{+0.421\\-0.434}$	$-0.58\substack{+0.43\\-0.50}$
σ_{CR}	$0.272\substack{+0.078\\-0.076}$	$0.291\substack{+0.133 \\ -0.078}$

T - M scaling relation

	This work	eFEDS, Chiu et al.
A _T	$3.946^{+0.504}_{-0.439}$	2022 3.27 ^{+0.26} _{-0.31}
Β _T	$0.503\substack{+0.074 \\ -0.066}$	0.65 ± 0.11
γ_{T}	$-0.595\substack{+0.458\\-0.444}$	$-1.03\substack{+0.54 \\ -0.75}$
δ_T	$-0.321\substack{+0.315\\-0.281}$	$-0.02\substack{+0.66\\-0.70}$
σ_T	$\textbf{0.339} \pm \textbf{0.05}$	$0.069\substack{+0.061\\-0.014}$

Conclusions

- This study presents a cosmological analysis of the eFEDS clusters sample using the CR-HR diagram method
- Cosmological constraints are consistent with previous analysis of the eFEDS data
- Constraints on CR-M scaling relation parameters are in a good agreement with those of Chiu et al. 2023
- T-M scaling relation constraints are in tension with the results from other cluster studies
- Possible source of error large measurement uncertainties of HR
- Mean exposure time of the eRASS is higher than that of the eFEDS. This will make it possible to measure the spectral characteristics of clusters with greater accuracy

Thank you for your attention!