Neutrino Spin Effects in Gravitaional Scattering

Mridupawan Deka (JINR)
and
Maxim Dvornikov (IZMARAN and JINR)

QUARKS, 2024

May 20, 2024

References

- M. Dvornikov, Neutrino spin oscillations in a magnetized Polish doughnut, JCAP 09 (2023) 039, arxiv:2307.10126.
- M. Deka and M. Dvornikov, Spin oscillations in neutrino gravitational scattering, to be published in Phys.Atom.Nucl. (2024), arxiv:2311.14475.

Outline

- Motivation
- Formulation in brief
- Some key details
- Results
- Conclusion
- Future plans

Motivation

- Neutrinos carry nonzero magnetic moment, μ. Experimental upper bound $\sim 10^{-11}-10^{-12} \mu_{\mathrm{B}}$.
- Nonzero magnetic moment of neutrinos leads to interaction with the electromagnetic fields.

Dirac neutrinos are left handed, i.e. their spins are opposite to their momenta.

- If a neutrino spin precesses in an external field, i.e. its spin direction changes with respect to its momentum, it becomes right-handed.
\Rightarrow Neutrino Spin Oscillations. Voloshin et al., 1986.

Motivation

- Accretion disks in SMBH in some galaxies can be sources of both photons and high energy neutrinos. Berezinsky \& Ginzburg, 1981
- Before arriving at the observer, these neutrinos move in strong gravitational field near BH, and their spins precess in the presence of external fields.
- Right-handed neutrinos are considered to be sterile in the standard model.
- We shall observe an effective reduction of the initial neutrino flux.

Formulation in brief

- We consider a uniform flux of left-polarized neutrinos propagating in parallel to the equatorial plane of a spinning black hole, $(r, \theta, \phi)_{s}=(\infty, \pi / 2,0)$.
- Their motion in the presence of a gravitational field of a rotating BH can be described exactly. Gralla et al., 2018.
- We consider a thick realistic accretion disk, a Polish doughnut, surrounding the BH. Abramowicz et al., 1978.
- We consider both toroidal and poloidal magnetic fields inside the accretion disk.
- At the end, we look at the probability distribtuons of neutrinos at the observer position on the $(\theta, \phi)_{\text {obs }}$ plane.

Kerr Metric

-We describe the spacetime of a spinning black hole in Kerr metric.

- Boyer-Lindquist coordinates, $x=(t, r, \theta, \phi)$:

$$
\begin{aligned}
d s^{2} & =g_{\mu \nu} d x^{\mu} d x^{\nu}=\left(1-\frac{r r g_{g}}{\Sigma}\right) d t^{2}+2 \frac{r r_{g} a \sin ^{2} \theta}{\Sigma} d t d \phi-\frac{\Sigma}{\Delta} d r^{2} \\
& -\Sigma d \theta^{2}-\frac{\Xi}{\Sigma} \sin ^{2} \theta d \phi^{2} \\
\Delta & =r^{2}-r r_{g}+a^{2}, \quad \Sigma=r^{2}+a^{2} \cos ^{2} \theta, \quad \Xi=\left(r^{2}+a^{2}\right) \Sigma+r r_{g} a^{2} \sin ^{2} \theta
\end{aligned}
$$

- BH mass: $M=r_{g} / 2$.
- BH spin: $J=M a(0<a<M)$.

Particle Trajectory in Kerr Spacetime

- The radial and polar potentials are given by

$$
\begin{align*}
& R=\left[\left(r^{2}+a^{2}\right) E-a L\right]^{2}-\Delta\left[Q+(L-a E)^{2}\right] \tag{1}\\
& \Theta=Q+\cos ^{2} \theta\left(a^{2} E^{2}-\frac{L^{2}}{\sin ^{2} \theta}\right) \tag{2}
\end{align*}
$$

Q is Carter constant.

- Integral equations along the particle trajectories,

$$
\begin{align*}
\int \frac{d r}{ \pm \sqrt{R}} & =\int \frac{d \theta}{ \pm \sqrt{\Theta}} \tag{3}\\
\phi & =a \int \frac{d r}{\Delta \sqrt{R}}\left[\left(r^{2}+a^{2}\right) E-a L\right]+\int \frac{d \theta}{\sqrt{\Theta}}\left[\frac{L}{\sin ^{2} \theta}-a E\right] \tag{4}
\end{align*}
$$

Black Hole Shadow Curve

The edge of BH shadow between the captured and escaping neutrinos satisfy: $R(\tilde{r})=R^{\prime}(\tilde{r})=0$.

$$
\begin{equation*}
\frac{L}{E}=-\frac{\tilde{r}^{2}(\tilde{r}-3 M)+a^{2}(\tilde{r}+M)}{a(\tilde{r}-M)}, \quad \frac{\sqrt{Q}}{E}=\frac{\tilde{r}^{3 / 2}}{a(\tilde{r}-M)} \sqrt{4 a^{2} M-\tilde{r}(\tilde{r}-3 M)^{2}} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
r_{ \pm}=2 M\left[1+\cos \left(\frac{2}{3} \arccos \left(\pm \frac{a}{M}\right)\right)\right], r_{-}<\tilde{r}<r_{+} \tag{6}
\end{equation*}
$$

Neutrino spin evolution

- The covariant equation for the neutrino spin four-vector (Dvornikov, 2013; Pomeransky and Khriplovich, 1998),

$$
\begin{equation*}
\frac{D S^{\mu}}{D \tau}=2 \mu\left(F^{\mu \nu} S_{\nu}-U^{\mu} U_{\nu} F^{\nu \lambda} S_{\lambda}\right)+\sqrt{2} G_{F} \frac{\epsilon^{\mu \nu \lambda \rho}}{\sqrt{-g}} G_{\nu} U_{\lambda} S_{\rho}, \frac{D U^{\mu}}{D \tau}=0 \tag{7}
\end{equation*}
$$

- Make a boost to a local Minkowskian rest frame so that the Vierbein vectors, e_{a}^{μ}, diagonalize the metric:

$$
\begin{equation*}
x_{a}=e_{a}^{\mu} x_{\mu}, \quad \eta_{a b}=e_{a}^{\mu} e_{b}^{\nu} g_{\mu \nu}, \quad \eta_{a b}=(1,-1,-1,-1) \tag{8}
\end{equation*}
$$

- The neutrino polarization three-vector can then be defined

$$
\begin{equation*}
\frac{d \boldsymbol{\zeta}}{d t}=2(\boldsymbol{\zeta} \times \boldsymbol{\Omega}), \quad \boldsymbol{\Omega}=\boldsymbol{\Omega}_{\mathrm{g}}+\boldsymbol{\Omega}_{\mathrm{em}}+\boldsymbol{\Omega}_{\mathrm{matter}} \tag{9}
\end{equation*}
$$

- Ω incorporates the neutrino interactions with external fields including gravity, and can be explicitly calculated in a given metric.

Effective Schrödinger Equation

- Instead, we solve the effective Schrödinger equation for the neutrino polarization,

$$
\begin{gather*}
i \frac{d \psi}{d r}=H_{r} \psi \tag{10}\\
H_{r}=-\mathcal{U}_{2}\left(\boldsymbol{\sigma} . \boldsymbol{\Omega}_{r}\right) \mathcal{U}_{2}^{\dagger}, \quad \mathcal{U}_{2}=\exp \left(i \pi \sigma_{2} / 4\right)
\end{gather*}
$$

- We use two-step Adams-Bashforth method to solve for ψ.
- For an incoming left polarized neutrino, $\psi_{-\infty}^{T}=(1,0)$.
- For an outgoing neutrino, it becomes, $\psi_{+\infty}^{T}=\left(\psi_{+\infty}^{(R)}, \psi_{+\infty}^{(L)}\right)$.
- The probability of a neutrino being left polarized: $P_{\mathrm{LL}}=\left|\psi_{+\infty}^{(L)}\right|^{2}$.
$\boldsymbol{\Omega}=\boldsymbol{\Omega}_{\mathrm{g}}+\Omega_{\mathrm{em}}+\Omega_{\text {matter }}$

Magnetic fields in the Accretion Disk

- We consider a thick accretion disk surrounding the BH (Polish doughnut).
- All disk parameters depend on r and θ.
- We assume that the specific angular momentum of a neutrino $l_{0}=L / E=$ const in the disk.
- The form of the disk depends on the potential,

$$
\begin{equation*}
W(r, \theta)=\frac{1}{2} \ln \left|\frac{g_{t t} g_{\phi \phi}-g_{t \phi}^{2}}{g_{\phi \phi}+2 l_{0} g_{t \phi}+l_{0}^{2} g_{t t}}\right| \tag{11}
\end{equation*}
$$

- Toroidal magnetic field is inherent in Polish doughnut. Komissarov, 2006
$\mathbf{W}(\mathrm{r}, \theta)$ at $\mathrm{a}=\mathbf{0 . 0 2 \mathrm { M }}$

$\mathrm{W}(\mathrm{r}, \theta)$ at $\mathrm{a}=\mathbf{0 . 9 8 \mathrm { M }}$

Poloidal Fields

- For stability, both toroidal and poloidal fields need to be included. Tayler, 1973.
- In this work, we use two different models of poloidal fields inside the accretion disk.

Model 1 (Wald, 1974)
$A_{t}=B a\left[1-\frac{r r_{g}}{2 \Sigma}\left(1+\cos ^{2} \theta\right)\right]$
$A_{\phi}=-\frac{B}{2} \sin ^{2} \theta\left[r^{2}+a^{2}-\frac{a^{2} r r_{g}}{\Sigma}\left(1+\cos ^{2} \theta\right)\right]$

Numerical Parameters

- The mass of SMBH is $10^{8} M_{\odot}$. The BH spin is $0<a<0.9 M$.
- The maximal strength of both poloidal and toroidal fields is 320 G . It is 1% of the Eddington limit for this BH mass. Beskin, 2010.
- The maximal matter density of hydrogen plasma is $10^{18} \mathrm{~cm}^{-3}$. Such density can be found in some AGN. Jiang et al., 2019.
- We consider Neutrino magnetic moment, $\mu=10^{-13} \mu_{\mathrm{B}}$. It is below the best astrophysical constraint. Viaux et al., 2013.

Results

Toroidal + Model 1 Poloidal field

Toroidal + Model 2 Poloidal field

Conclusion

- We find that only gravitational interaction does not cause the spin-flip of the ultrarelativistic neutrinos in their gravitational scattering.
- The source of neutrino spin oscillations is the neutrino interactions with the moderately strong extrenal magnetic field of the accretion disk.

Future Plans

- Extend oue studies to neutrino beams which are not parallel to the equatorial plane.
- Also study counter-rotating accretion disks.
- More accurate solution methods to Schrödinger Equation, e.g. instead of order 2, we shall implement order 3 or 4, etc.
- To make the code more efficient and optimized so that the statistics can be increased multi-fold within a reasonable computational time.

Thank you!

Extras

Dokuchaev and Nazarova, 2020

Particle Trajectory in Kerr Spacetime

- We use the Hamilton-Jacobi approach to describe the geodesic of a particle of mass, m. Later we take $m \rightarrow 0$.
- The solution of Hamilton-Jacobi equation leads to,

$$
\begin{equation*}
S=-\frac{1}{2} m^{2} \lambda-E t+L \phi+\int d r \frac{\sqrt{R}}{\Delta}+\int d \theta \sqrt{\Theta} \tag{14}
\end{equation*}
$$

where,

$$
\begin{align*}
\int \frac{d r}{ \pm \sqrt{R}} & =\int \frac{d \theta}{ \pm \sqrt{\Theta}} \\
R & =\left[\left(r^{2}+a^{2}\right) E-a L\right]^{2}-\Delta\left[Q+(L-a E)^{2}\right] \\
\Theta & =Q+\cos ^{2} \theta\left(a^{2} E^{2}-\frac{L^{2}}{\sin ^{2} \theta}\right) \\
\phi & =a \int \frac{d r}{\Delta \sqrt{R}}\left[\left(r^{2}+a^{2}\right) E-a L\right]+\int \frac{d \theta}{\sqrt{\Theta}}\left[\frac{L}{\sin ^{2} \theta}-a E\right] \tag{15}
\end{align*}
$$

Neutrino spin evolution in curved spacetime

- We consider neutrino as a Dirac particle with nonzero magnetic moment, μ.
- Weakly interacts with the background matter.
- Four velocity of a neutrino is parallel transported along geodesics.
- The covariant equation for the neutrino spin four vector in curved spacetime (Pomeransky and Khriplovich, 1998; Dvornikov, 2013; Dvornikov, 2023),

$$
\begin{aligned}
& \frac{D S^{\mu}}{D \tau}=2 \mu\left(F^{\mu \nu} S_{\nu}-U^{\mu} U_{\nu} F^{\nu \lambda} S_{\lambda}\right)+\sqrt{2} G_{F} \frac{\epsilon^{\mu \nu \lambda \rho}}{\sqrt{-g}} G_{\nu} U_{\lambda} S_{\rho}, \frac{D U^{\mu}}{D \tau}=0 . \\
& D S^{\mu}=d S^{\mu}+\Gamma_{\alpha \beta}^{\mu} S^{\alpha} d x^{\beta} \\
& G_{F}=1.17 \times 10^{-5} \mathrm{GeV}^{-2}: \text { Fermi constant } \\
& G_{\mu}: \text { covariant effective potential. }
\end{aligned}
$$

We introduce a locally Minkowskian coodinates,

$$
\begin{equation*}
x_{a}=e_{a}^{\mu} x_{\mu} \tag{16}
\end{equation*}
$$

where $e_{a}^{\mu}(a=0 \cdots 3)$ are the vierbein vectors satisfying the relations

$$
\begin{equation*}
e_{a}^{\mu} e_{b}^{\nu} g_{\mu \nu}=\eta_{a b}, \quad e_{\mu}^{a} e_{\nu}^{b} \eta_{a b}=g_{\mu \nu} \tag{17}
\end{equation*}
$$

Here $e_{\mu}^{a} e_{\mu}^{a}$ are the inverse vierbein vectors $\left(e_{a}^{\mu} e_{\nu}^{a}=\delta_{\nu}^{\mu}\right.$ and $\left.e_{a}^{\mu} e_{\mu}^{b}=\delta_{a}^{b}\right)$ and $\eta_{a b}=\operatorname{diag}(1,-1,-1,-1)$.

$$
\begin{align*}
& e_{0}^{\mu}=\left(\sqrt{\frac{\Xi}{\Sigma \Delta}}, 0,0, \frac{\operatorname{arr}_{g}}{\sqrt{\Sigma \Delta \Xi}}\right), e_{1}^{\mu}=\left(0, \sqrt{\frac{\Delta}{\Sigma}}, 0,0\right) \\
& e_{2}^{\mu}=\left(0,0, \frac{1}{\sqrt{\Sigma}}, 0\right), e_{3}^{\mu}=\left(0,0,0, \frac{1}{\sin \theta} \sqrt{\frac{\Sigma}{\Xi}}\right) \tag{18}
\end{align*}
$$

$$
\begin{align*}
\frac{d \boldsymbol{\zeta}}{d t}= & 2(\boldsymbol{\zeta} \times \boldsymbol{\Omega}), \quad \boldsymbol{\Omega}=\boldsymbol{\Omega}_{\mathrm{g}}+\boldsymbol{\Omega}_{\mathrm{em}}+\boldsymbol{\Omega}_{\mathrm{matt}} \tag{19}\\
\boldsymbol{\Omega}_{\mathrm{g}} & =\frac{1}{2 U^{t}}\left[\boldsymbol{b}_{g}+\frac{1}{1+u^{0}}\left(\boldsymbol{e}_{g} \times \boldsymbol{u}\right)\right] \\
\boldsymbol{\Omega}_{\mathrm{em}} & =\frac{\mu}{U^{t}}\left[u^{0} \boldsymbol{b}-\frac{\boldsymbol{u}(\boldsymbol{u} \boldsymbol{b})}{1+u^{0}}+(\boldsymbol{e} \times \boldsymbol{u})\right] \\
\boldsymbol{\Omega}_{\mathrm{matt}} & =\frac{G_{\mathrm{F}}}{\sqrt{2} U^{t}}\left[\boldsymbol{u}\left(g^{0}-\frac{(\boldsymbol{g} \boldsymbol{u})}{1+u^{0}}\right)-\boldsymbol{g}\right] \tag{20}
\end{align*}
$$

Here $u^{a}=\left(u^{0}, \boldsymbol{u}\right)=e_{\mu}^{a} U^{\mu}, U^{\mu}=\frac{d x^{\mu}}{d \tau}$ is the four velocity in the world co-ordinates and τ is the proper time. $G_{a b}=\left(\boldsymbol{e}_{g}, \boldsymbol{b}_{g}\right)=\gamma_{a b c} u^{c}$, $\gamma_{a b c}=\eta_{a d} e_{\mu ; \nu}^{d} e_{b}^{\mu} e_{c}^{\nu}$ are the Ricci rotation coefficients, the semicolon stays for the covariant derivative, and $f_{a b}=e_{a}^{\mu} e_{b}^{\nu} F_{\mu \nu}=(\boldsymbol{e}, \boldsymbol{b})$ is the electromagnetic field tensor in the locally Minkowskian frame, and $F_{\mu \nu}$ is an external electromagnetic field tensor. μ is the neutrino magnetic moment, and $G_{\mathrm{F}}=1.17 \times 10^{-5} \mathrm{Gev}^{-2}$ is the Fermi constant. $g^{a}=\left(g^{0}, \boldsymbol{g}\right)=e_{\mu}^{a} G^{\mu}, G^{\mu}$ is the contravariant effective potential of the neutrino electroweak interaction with a background matter.

Toroidal Fields

- The electromagnetic field tensor

$$
\begin{equation*}
F_{\mu \nu}=E_{\mu \nu \alpha \beta} U_{f}^{\alpha} B^{\beta}, \quad E^{\mu \nu \alpha \beta}=\frac{\epsilon^{\mu \nu \alpha \beta}}{\sqrt{-g}} \tag{21}
\end{equation*}
$$

- The four vector fluid velocity in the disk and toroidal magnetic field are

$$
\begin{align*}
U_{f}^{\mu} & =\left(U_{f}^{t}, 0,0, U_{f}^{\phi}\right), \tag{22}
\end{align*} \quad U_{f}^{t}=\sqrt{\left|\frac{\mathcal{A}}{\mathcal{L}}\right|} \frac{1}{1-l_{0} \Omega}, \quad U_{f}^{\phi}=\Omega U_{f}^{t}, ~\left(B^{\phi}=\sqrt{\frac{2 p^{(\text {(tor })_{m}}}{|\mathcal{A}|}}, \quad B^{t}=l_{0} B^{\phi} .\right.
$$

- The angular velocity in the disk

$$
\begin{equation*}
\Omega=-\frac{g_{t \phi}+l_{0} g_{t t}}{g_{\phi \phi}+l_{0} g_{t \phi}} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}=g_{t t} g_{\phi \phi}-g_{t \phi}^{2}, \quad \mathcal{A}=g_{\phi \phi}+2 l_{0} g_{t \phi}+l_{0}^{2} g_{t t} \tag{25}
\end{equation*}
$$

Toroidal Fields

- The disk density ρ and the magnetic pressure $p_{m}^{(\text {tor })}$ have the form,
$\rho=\left[\frac{\kappa-1}{\kappa} \frac{W_{\text {in }}-W}{K+K_{m} \mathcal{L}^{\kappa-1}}\right]^{\frac{1}{\kappa-1}}, p_{m}^{\text {(tor) }}=K_{m} \mathcal{L}^{\kappa-1}\left[\frac{\kappa-1}{\kappa} \frac{W_{\text {in }}-W}{K+K_{m} \mathcal{L}^{\kappa-1}}\right]^{\frac{\kappa}{\kappa-1}}$

Poloidal Fields

- For stability, both toroidal and poloidal fields need to be included. Tayler, 1973.
- In this work, we use two different models of poloidal fields inside the accretion disk.

Model 1 (Wald, 1974)
$A_{t}=B a\left[1-\frac{r r_{g}}{2 \Sigma}\left(1+\cos ^{2} \theta\right)\right]$
$A_{\phi}=-\frac{B}{2} \sin ^{2} \theta\left[r^{2}+a^{2}-\frac{a^{2} r r_{g}}{\Sigma}\left(1+\cos ^{2} \theta\right)\right]$
$B \propto r^{-5 / 4}$ (Blandford \& Payne, 1982)

Model 2 (Fragile \& Meier, 2009)

$$
A_{\phi}=b \rho
$$

