Application of neural networks for calculating path integrals in quantum field theory

Chistyakov V. V. Ivanov A. S. Salnikov D. V. Vasiliev A. V. MSU, INR

Quarks 2024

Path integral

$$
\begin{gather*}
\langle O\rangle_{\beta}=\frac{\operatorname{Tr}\left(e^{-\beta H} O\right)}{Z}=\sum_{n}\langle n| O|n\rangle \frac{e^{-\beta E_{n}}}{Z} \tag{1}\\
\langle O\rangle_{\beta}=\frac{1}{Z} \int D[\phi(x)] e^{-S_{E}[\phi]} O(\phi) \tag{2}\\
\beta \rightarrow \infty \quad\langle O\rangle_{\beta} \rightarrow\langle 0| O|0\rangle \tag{3}
\end{gather*}
$$

$1+0$ QFT and general kinetic term

$$
\begin{gather*}
H=T(p)+V(x) \tag{4}\\
\langle O\rangle_{\beta} \approx \int \frac{d^{N} x}{Z} \mathcal{K}_{T}(x) \mathcal{K}_{V}(x) \bar{O}(x) \equiv \int d^{N} x \frac{e^{-S(x)}}{Z} \bar{O}(x) \tag{5}\\
\mathcal{K}_{T}(x)=\prod_{i=1}^{N} K_{T}\left(x_{i+1}-x_{i}\right) \quad \mathcal{K}_{V}(x)=\prod_{i=1}^{N} K_{V}\left(x_{i}\right) \tag{6}\\
K_{V}(x)=\exp (-\tau V(x)) \tag{7}\\
K_{T}(\xi)=\int \frac{d p}{2 \pi} \exp (-\tau T(p)+i p \xi) \tag{8}
\end{gather*}
$$

Relativistic kinetic term

$$
\begin{gather*}
T(p)=\sqrt{p^{2}+m^{2}}-m \tag{9}\\
K_{T}(\xi)=\frac{m}{\pi \sqrt{1+\left(\frac{\xi}{\tau}\right)^{2}}} K_{1}\left(m \tau \sqrt{1+\left(\frac{\xi}{\tau}\right)^{2}}\right) \tag{10}\\
m \rightarrow 0 \quad T(p)=|p| \tag{11}\\
K_{T}(\xi)=\frac{1}{\pi \tau} \frac{1}{1+\left(\frac{\xi}{\tau}\right)^{2}} \tag{12}
\end{gather*}
$$

Ivanov A. S., Novoselov A. A., Pavlovsky O. V. "Relativistic path integral monte carlo: Relativistic oscillator problem" // IJMP C. 2016. 27, 11. 1650133-1-1650133-14.

Monte-Carlo algorithm

$$
\begin{gather*}
P(x)=\frac{e^{-S(x)}}{Z} \tag{13}\\
\langle O\rangle=\int d^{N} x P(x) \bar{O}(x) \approx \frac{1}{M} \sum_{k=1}^{M} \bar{O}\left[x^{(k)}\right] \tag{14}\\
\left\{x^{(k)}\right\} \sim P(x) \tag{15}
\end{gather*}
$$

we need to generate a sample $\left\{x^{(k)}\right\}$ from distribution $P(x)$

Markov chain Monte Carlo (Metropolis)

- generate a sample $X=\left\{x^{(k)}\right\}$ from some simple distribution. for example, $x_{i}^{(k)}=0$ - "cold"trajectories
- construct new random trajectory for each $x \in X y^{(k)}=x^{(k)}+\sqrt{\tau} d h$

$$
d \sim \mathbb{U}[-1,1] \quad h \in \mathbb{R}^{N}
$$

- form a new sample X^{1} : we change $x^{(k)} \in X$ on $y^{(k)}$ with transition probability $\pi(y, x)=\min \left(\frac{P[y]}{P[x]}, 1\right)$
- form a new sample X^{2} based on X^{1} in the same way.

Continue the process.
$X^{1}, \ldots, X^{N}-$ Markov chain with final distribution $P(x)$

Disadvantages of the technique

- takes a lot of time
- unable to take symmetries into account

Exactly soluble model: harmonic oscillator

$$
\begin{align*}
& H=\frac{p^{2}}{2}+\frac{x^{2}}{2} \tag{16}\\
& S(x)=\frac{1}{2}(A x, x) \tag{17}\\
& A=\frac{1}{\tau}\left(\left(2+\tau^{2}\right) I-T-T^{\dagger}\right) \tag{18}\\
& T=\left(\begin{array}{cccc}
0 & 1 & \ldots & 0 \\
0 & 0 & 1 \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & 0 & 1 \\
1 & \ldots & \ldots & 0
\end{array}\right) \tag{19}\\
& x=w z \quad z \sim \mathcal{N}(0,1) \quad w^{\top} A w=I \tag{20}
\end{align*}
$$

Orthogonal transformation

$$
\begin{gather*}
w=O n \tag{21}\\
v_{0}=\frac{1}{\sqrt{N}}(1,1, \ldots, 1)^{T} \quad O^{\dagger} T O=\operatorname{diag}(\ldots) \tag{22}\\
u_{k}=\sqrt{\frac{2}{N}}\left(\begin{array}{c}
1 \\
\cos \left(\frac{2 \pi k}{N}\right) \\
\cos \left(\frac{4 \pi k}{N}\right) \\
\cdots \\
\cos \left(\frac{2(N-1) \pi k}{N}\right)
\end{array}\right) \quad w_{k}=\sqrt{\frac{2}{N}}(1,-1,1, \ldots,-1)^{T} \tag{23}\\
O=\left\|v_{0}, v_{N / 2}, u_{1}, w_{1}, \ldots, u_{N / 2-1}, w_{N / 2-1}\right\| \tag{24}\\
\sin \left(\frac{2\left(\frac{2 \pi k}{N}\right)}{\cdots} \begin{array}{c}
0 \\
\sin \left(\frac{2 \pi k}{N}\right) \\
\sin) \pi k
\end{array}\right)
\end{gather*}
$$

[^0]
Minimization task

$$
\begin{gather*}
x=w z \quad P_{w}(x)=r(z)|\operatorname{det} w| \tag{25}\\
r(z)=\frac{1}{(2 \pi)^{N / 2}} \exp \left(\left.-\frac{1}{2}| | z \right\rvert\, \|^{2}\right) \tag{26}\\
P(x)=\frac{e^{-\frac{1}{2}(A x, x)}}{Z} \tag{27}\\
D_{K L}(p \mid q)=\int d x p(x) \ln \frac{p(x)}{q(x)} \tag{28}\\
D_{K L}(p \mid q) \geq 0 \quad D_{K L}(p \mid q)=0 \Longleftrightarrow p(x)=q(x) \tag{29}\\
L[w]=D_{K L}\left(P_{g} \mid P\right)-\ln Z=\frac{1}{2} \operatorname{tr}\left(w^{\top} A w\right)-\ln |\operatorname{det} w| \tag{30}\\
\nabla_{w} L=A w-\left(w^{T}\right)^{-1} \quad \nabla_{w} L=0 \Longleftrightarrow w^{\top} A w=l \tag{31}
\end{gather*}
$$

Normalizing flow

$$
\begin{align*}
& \begin{array}{ll}
\text { latent space } \\
z \sim \mathcal{N}^{N}(0,1) & x=g(z) \\
x \sim P_{g}(x) \approx P(x) \\
P_{g}(x)=r(z)\left|\operatorname{det} \frac{\partial g}{\partial z}\right| & P(x)=\frac{e^{-S(x)}}{Z} \\
L[w]=D_{K L}\left(P_{g} \mid P\right)-\ln Z=\frac{1}{M} \sum_{k=1}^{M} S\left(g\left(z_{k} \mid w\right)\right)-\ln \left|\operatorname{det} \frac{\partial g\left(z_{k} \mid w\right)}{\partial z}\right|
\end{array}
\end{align*}
$$

Normalizing flow

The map g is a composition of affine transformations

$$
\begin{equation*}
g=A_{n} \circ \ldots \circ A_{1} \tag{34}
\end{equation*}
$$

We devide z on two parts

$$
\begin{equation*}
z=u+v \tag{35}
\end{equation*}
$$

For example, u contains coordinats of z with even numbers, and v - the odd one.

$$
\begin{array}{ll}
A(u)=u & {[A(v)]_{k}=e^{\theta_{1 k}(u)} v_{k}+\theta_{2 k}(u)} \\
& \theta: \mathbb{R}^{N / 2} \rightarrow \mathbb{R}^{N} \tag{37}
\end{array}
$$

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, Balaji Lakshminarayanan "Normalizing Flows for Probabilistic Modeling and Inference" Journal of Machine Learning Research, 22(57):1-64, 2021

Normalizing flow

Multiscale architecture

Shuo-Hui Li, Lei Wang "Neural network renormalization group" Phys. Rev. Lett. 121, 260601 (2018) arXiv:1802.02840 - Ising model

Shift symmetry

$$
\begin{gather*}
y=g(z) \tag{38}\\
x=O y \tag{39}
\end{gather*}
$$

- y_{i} transforms on irreducible (on \mathbb{R}) representations of group \mathbb{Z}_{N}

Some papers

- M. S. Albergo, G. Kanwar, and P. E. Shanahan "Flow-based generative models for Markov chain Monte Carlo in lattice field theory"Phys. Rev. D 100, $034515-\phi^{4}$
- Michael S. Albergo, Denis Boyda, Daniel C. Hackett, Gurtej Kanwar, Kyle Cranmer, Sébastien Racanière, Danilo Jimenez Rezende, Phiala E. Shanahan "Introduction to Normalizing Flows for Lattice Field Theory" arXiv:2101.08176 (preprint) - QCD, Gauge equivariant coupling layers
- Isay Katsman, Aaron Lou, Derek Lim, Qingxuan Jiang "Equivariant Manifold Flows" arXiv:2107.08596 [stat.ML] (preprint)

$$
\begin{equation*}
H=\sqrt{p^{2}+m^{2}}-m+\frac{m \omega^{2} x^{2}}{2} \tag{40}
\end{equation*}
$$

Relativistic Oscillator

$$
\begin{equation*}
H=\sqrt{p^{2}+m^{2}}-m+\frac{m \omega^{2} x^{2}}{2} \tag{41}
\end{equation*}
$$

Relativistic Oscillator

$$
\begin{equation*}
H=\frac{p^{2}}{2}+\frac{1}{2}\left(\left[e^{-\omega x}-1\right]^{2}-1\right) \tag{42}
\end{equation*}
$$

$$
\begin{equation*}
H=\frac{p^{2}}{2}+\frac{1}{2}\left(\left[e^{-\omega x}-1\right]^{2}-1\right) \tag{43}
\end{equation*}
$$

$$
\begin{equation*}
H=\frac{p^{2}}{2}+\frac{1}{2}\left(\left[e^{-\omega x}-1\right]^{2}-1\right) \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
H=\frac{p^{2}}{2}+\frac{x^{2}}{2}+g x^{4} \tag{45}
\end{equation*}
$$

Anharmonic Oscillator

$$
\begin{equation*}
H=\frac{p^{2}}{2}+\frac{x^{2}}{2}+g x^{4} \tag{46}
\end{equation*}
$$

Anharmonic Oscillator

$$
\begin{equation*}
H=\frac{p^{2}}{2}+\frac{x^{2}}{2}+g x^{4} \tag{47}
\end{equation*}
$$

MCMC in latent space

$$
\begin{equation*}
H=\sqrt{p^{2}+m^{2}}-m+\frac{m \omega^{2} x^{2}}{2} \tag{48}
\end{equation*}
$$

Conclusion

- The use of neural networks makes it possible to speed up the calculation of functional integrals several times.
- The approach is universal: acceleration is observed for different models. This will allow it to be used for a wide range of tasks.
- The symmetry of the problem is taken into account, which may be especially important for applications to the theory of gauge fields.
- The artificial intelligence algorithms used are quite simple. It is expected to significantly improve the results by applying more sophisticated methods.

The research is supported by Basis Foundation. grant: 23-2-9-18-1

[^0]: $)$

