New physics from atmosphere: light sgoldstino case

Sergei Demidov

Institute for Nuclear Research of RAS

Quarks-2024, 24 May, 2024

New Physics in form of light particles

- New light (GeV-scale) very weakly interacting particles are predicted in many BSM scenarios: dark matter, new gauge bosons, dark photon, sterile neutrinos, ALP, supersymmetric models
- Big experimental program at LHC (FASER, SHiP etc.)
- New light particles feeble interaction with SM, i.e. small production and decay probabilities
- They may be long-lived!
- Production in decays of mesons: at colliders as well as in atmosphere!
- Neutrino experiments are looking for atmospheric neutrinos produced in meson decays: why not look for new particles?

- SUSY attractive extension of SM, extensively studied at the LHC experiments
- SUSY breaking: hidden sector → visible sector No direct interactions between visible and hidden sectors
- Transmission of SUSY breaking at a scale M: messengers (gravity, gauge interactions, etc.)
 Scantoneous SUSY breaking, galdeting, and its
- Spontaneous SUSY breaking: goldstino and its superpartners

(Chiral) Goldstino supermultiplet

- $\Phi = \phi + \sqrt{2}\theta\psi + F_{\phi}\theta^2$, F_{ϕ} auxiliary field
- SUSY broken $\rightarrow F \equiv \langle F_{\phi} \rangle \neq 0$
- \sqrt{F} supersymmetry breaking scale
- $\sqrt{F} \gg M_{EW}$ goldstino supermultiplet decouples usual MSSM
- $\sqrt{F} \gtrsim M_{EW}$ we should include S, P and ψ in low energy theory low scale supersymmetry breaking
- ψ Goldstone fermion,
- goldstino \rightarrow longitudinal gravitino component : $m_{3/2} = \sqrt{8\pi/3}F/M_{Pl}$
- for $\sqrt{F} = 100$ TeV, $m_{3/2} \approx 2.4$ eV superlight gravitino
- $\phi = (S + iP)/2$, where S(P) scalar(pseudoscalar) sgoldstino

Interactions of goldstino supermultiplet with SM

$$\begin{aligned} &\mathsf{MSSM} + \mathsf{goldstino} \ \mathsf{supermultiplet} \\ &\Phi = \phi + \sqrt{2}\theta\psi + F_{\phi}\theta^{2}, \ \langle F_{\phi} \rangle = F, \\ &\mathcal{L} = \mathcal{L}_{MSSM} + \mathcal{L}_{\Phi-K\"ahler} + \mathcal{L}_{\Phi-gauge} + \mathcal{L}_{\Phi-superpotential} \\ &\mathcal{L}_{\Phi-K\"ahler} = -\int d^{2}\theta \ d^{2}\bar{\theta} \ \Phi^{\dagger}\Phi \cdot \sum_{k} \frac{m_{k}^{2}}{F^{2}} \Phi_{k}^{\dagger} \ e^{g_{1}V_{1}+g_{2}V_{2}+g_{3}V_{3}} \Phi_{k} \\ &\mathcal{L}_{\Phi-gauge} = \frac{1}{2} \int d^{2}\theta \ \Phi \cdot \sum_{\alpha} \frac{M_{\alpha}}{F} \ TrW^{\alpha}W^{\alpha} + h.c. , \\ &\mathcal{L}_{\Phi-superpotential} = \int d^{2}\theta \ \Phi \cdot \epsilon_{ij} \left(-\frac{B}{F} \ H_{D}^{i}H_{U}^{j} + \frac{A_{ab}^{D}}{F} \ Q_{a}^{j}D_{b}^{c}H_{D}^{j} + ... \right) + H_{A} \end{aligned}$$

- Nonrenormalizable, low energy effective theory $E \lesssim \sqrt{F}$
- Weak coupling regime: hierarchy $m_{soft} \lesssim \sqrt{F}$
- Higher order interactions are suppressed by higher powers of F

Sgoldstino interaction lagrangian with gauge fields and fermions

$$\mathcal{L}_{\phi} = -\sum_{\alpha} \frac{M_{\alpha}}{4\sqrt{2}F} \mathbf{S} F^{\alpha}_{a\ \mu\nu} F^{\alpha\ \mu\nu}_{a} - \epsilon_{ij} \left(\frac{A^{D}_{ab}}{\sqrt{2}F} \bar{q}^{j}_{a} d^{c}_{b} \cdot h^{j}_{D} \mathbf{S} + \dots \right)$$

$$-\sum_{\alpha} \frac{M_{\alpha}}{8\sqrt{2}F} P F^{\alpha}_{a\ \mu\nu} \epsilon^{\mu\nu\lambda\rho} F^{\alpha}_{a\lambda\rho} - \epsilon_{ij} \left(i \frac{A^{D}_{ab}}{\sqrt{2}F} \bar{q}^{j}_{a} \gamma^{5} d^{c}_{b} \cdot h^{i}_{D} P + \dots \right)$$

Scalar sgoldstino can mix with the Higgs boson with mixing angle

$$\theta_{Sh} \approx -\frac{4\mu^3 v \sin 2\beta + v^3 (g_1^2 M_1 + g_2^2 M_2) \cos 2\beta}{2Fm_h^2}$$

Light sgoldstino phenomenology: decays

see, e.g., Gorbunov, '2000

Main decay channels for sgoldstinos $m_{S,P} < 0.5$ GeV:

Decay $P
ightarrow \gamma \gamma$ is dominant at least up to $3m_{\pi}$

Light sgoldstino production in light meson decays

Scalar sgoldstino S

$$\begin{split} \mathsf{Br}(\mathsf{K}^{\pm} \to \pi^{\pm} \mathsf{S}) &\approx 1.3 \cdot 10^{-3} \times \left(\frac{A_{\mathsf{V}}}{\mathsf{F}} + \theta_{\mathsf{S}h}\right)^{2} \times \lambda^{1/2} \left(\frac{m_{\mathsf{S}}}{m_{\mathsf{K}}}, \frac{m_{\pi}}{m_{\mathsf{K}}}\right) \\ \mathsf{Br}\big(\mathsf{K}_{\mathsf{L}} \to \pi^{\mathsf{0}} \mathsf{S}\big) &\approx 5.5 \cdot 10^{-3} \times \left(\frac{A_{\mathsf{V}}}{\mathsf{F}} + \theta_{\mathsf{S}h}\right)^{2} \times \lambda^{1/2} \left(\frac{m_{\mathsf{S}}}{m_{\mathsf{K}}}, \frac{m_{\pi}}{m_{\mathsf{K}}}\right) \end{split}$$

Pseudoscalar sgoldstino P

$$P - \pi^{0} \text{ mixing: } \sin^{2}\theta \times \sim \frac{M_{3}^{2}f_{\pi}^{2}m_{\pi}^{4}f(A/M_{3})}{F^{2}(m_{P}^{2} - m_{\pi^{0}}^{2})^{2}}$$
$$\Gamma(K^{\pm} \to P \pi^{\pm}) \approx \sin^{2}\theta\Gamma(K^{\pm} \to \pi^{0} \pi^{\pm}) \mid_{m_{\pi} \to m_{P}}$$
$$\Gamma(\pi^{\pm} \to P e^{\pm}\nu_{e}) \approx \sin^{2}\theta \times \Gamma(\pi^{\pm} \to P e^{\pm}\nu_{e}) \mid_{m_{\pi} \to m_{P}}$$
$$\Gamma(K^{\pm} \to P e^{\pm}\nu_{e}) = \sin^{2}\theta \times \Gamma(K^{\pm} \to P e^{\pm}\nu_{e}) \mid_{m_{\pi} \to m_{P}}$$

NB: Above decays can go through flavor violating couplings

Production of light particles in meson decays in atmosphere

see, e.g. Argüelles, Coloma, Hernandez, Muñoz, '20

Production of *S*: $M \rightarrow S + ... \qquad S \rightarrow \gamma \gamma$

Fedynitch et al.'12, '15, https://mceq.readthedocs.io

We use MCEq program – Matrix Cascade Equations

$$\frac{d\Phi_M}{dX} = -\frac{\Phi_M}{\lambda_{int,M}} - \frac{\Phi_M}{\lambda_{dec,M}} + \sum_{M'} \int dE_{M'} \frac{\Phi_{M'}}{\lambda_{int,M'}} \frac{dN_M^{int}}{dE_M} + \sum_{M'} \int dE_{M'} \frac{\Phi_{M'}}{\lambda_{dec,M'}} \frac{dN_M^{dec}}{dE_M} \frac{dN_M^{dec}}{dE_M} \frac{$$

$$\lambda_{int,M}$$
 and $\lambda_{dec,M}$ – interaction and decay length of P
 $\frac{dN_M^{int}}{dE_M}$ and $\frac{dN_M^{dec}}{dE_M}$ – production spectra of M

Atmospheric model – NRLMSISE-00

Hadronic interactions: SYBILL-2.3c, QGSJET-II-04, DPMJET-III

Flux of S at the detector:

$$\frac{d\Phi_{S}}{dE_{S}d\cos\theta} = 2\pi \int dX \, \mathrm{e}^{-I/\lambda_{dec,S}} \, \left(\frac{d\Phi_{S}}{dE_{S}d\Omega dX}\right)_{0}$$

Signal in Super-Kamiokande

SK view (from Kajita et al. NPB 908 (2016) 14)

Example of event (from arXiv:2311.05105)

Electron and photons \longrightarrow e/m showers \longrightarrow blurred rings Muons and charged pions \longrightarrow rings with sharp edges

Signal in Super-Kamiokande

Very conservative estimate: background – atmospheric neutrinos

Atmospheric neutrino oscillation analysis at SK (PRD 97, 072001) -5326 days, take all multi-GeV e-like events

- Fix m_S (or m_P) and dominant production channel in a decay
- Two parameters: τ_S and $Br(M \rightarrow S + ...)$
- Expected signal:

$$S_{i} = \epsilon T \int d\cos\theta \, dE_{S} \, S_{eff}^{SK}(\theta, E_{S}) \, \frac{d\Phi_{S}}{dE_{S}d\cos\theta}$$

Find 90% CL bounds using

$$\chi^2 = 2\sum_i \left(S_i + B_i - N_i \left(1 - \log \frac{N_i}{S_i + B_i}\right)\right)$$

 Sensitivity of Hyper-Kamiokande (10 years): larger size and fiducial volume (a factor about 8.4)

${\it K} ightarrow {\it S} \pi, {\it S} ightarrow \gamma \gamma$: bounds from SK data

Scalar sgoldstino S

Dominant production channels: $K^{\pm} \rightarrow \pi^{\pm}S$ and $K_{I} \rightarrow \pi^{0}S$ 10^{-4} 10^{-4} SYBILL-2.3d QGSJET-II-0 10^{-5} 10^{-5} DPM IET_III $m_S = 0.05 \text{ GeV}$ $3r(K^+ \rightarrow \pi^+ S)$ $\operatorname{Br}(K^+ \to \pi^+ S)$ 10^{-6} 10^{-6} 10^{-7} 10^{-7} $m_S = 0.33 \text{ GeV}$ 10^{-8} 10^{-8} $m_S = 0.15 \text{ GeV}$ 10^{-9} 10^{-9} 10 100 1000 10^{5} 10^{6} 10^{7} 10 100 1000 10^{5} 10^{4} 10^{8} 10^{4} 10^{6} 10^{7} 10^{8} $c\tau$, [m] $c\tau$, [m]

Peak sensitivity – $c\tau_S \sim 10^2 - 10^4$ m

Comparison with other experiments

c au = 1000 m c au = 5623 m

$K \rightarrow Pe\nu_e, P \rightarrow \gamma\gamma$

Pseudoscalar sgoldstino P Production channels: $K^{\pm} \rightarrow Pe^{\pm}\nu_{e}$

$K \rightarrow Pe\nu_e, P \rightarrow \gamma\gamma$

(

Pseudoscalar sgoldstino P Production channels: $K^{\pm} \rightarrow Pe^{\pm}\nu_{e}, P \rightarrow \gamma\gamma$

$$c au=$$
 1000 m

$$c\tau = 5623 \text{ m}$$

Relevant parameter space of the model

- Sgoldstino (S $ightarrow \gamma\gamma$) lifetime: 10³ m $\lesssim c\tau \lesssim 10^6$ m
- $\frac{M_3}{F} \sim 10^{-7} 10^{-9} \text{ GeV}^{-1}$
- Production S: $\frac{A}{F} \sim 4 \cdot 10^{-6} \text{ GeV}^{-1}$
- Production P: $\frac{M_3}{F} \sim 10^{-5} \text{ GeV}^{-1}$

10-10-2 10^{-3} 10^{-4} lectron b g_{ayy} [GeV⁻¹] 10⁻⁵ 10-6 10-7 10^{-8} SK sensitivity 10⁻⁹ $g_{a\gamma Z} = 0$ 10-10 10^{-2} 10^{-5} 10^{-4} 10^{-3} 10^{-1} 10⁰ 10¹ ma [GeV]

Parameter space: $M_3 \gg A \gg M_{\gamma\gamma}$

- Atmospheric beam dump an interesting avenue for searches of light long-lived particles
- Improved analysis: take into account signal from atmospheric neutrino
- Production of S(P) in decays of heavier mesons such as η, η', D, ...

Thank you!

This work is supported in the framework of the State project "Science" by the Ministry of Science and Higher Education of the Russian Federation under the contract 075-15-2024-541.