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Introduction

In our study we considered spherically-symmetric nontopological
solitons in (3+1) theory of a complex neutral vector field V µ

coupled to an electromagnetic field tensor Fµν by a dipole
interaction:

Lint = − iγ

2
Fµν(V ∗

µVν − V ∗
ν Vµ),

where γ is dimensionless a coupling constant.
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Moving to the non-relativistic limit, we obtain (neglecting zero
component of a vector field):

i
γ

2
Fij(V

∗iV j − V ∗jV i ) = −i
γ

2M
BkϵijkΨ

∗iΨj =
γ

2M
Ψ∗(B · Ŝ)Ψ,

where V i = e−iMt 1√
2M

Ψi (p) and
γ

2M
S is a magnetic moment

(Lee, Yang, Phys. Rev. 1962).
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Motivation

Neutral vector particle with a magnetic moment is a candidate
for a feebly interacting DM. The bounds on this type of
matter are not as strong as those on charged matter (Barger,
Keung, Marfatia, 2010).
Classical configurations of vector matter with a magnetic
moment (Rb atoms) were observed in the experiments with
ultracold atoms (Dalfovo, Giorgini, Pitaevskii, Rev. Mod.
Phys., 1999).
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Setup

Consider a (3+1)-dimensional theory of the complex massive
neutral field V µ coupled to the electromagnetic field tensor Fµν :

L = −1

4
FµνF

µν − 1

2
V ∗
µνV

µν − iγ

2
FµνW

µν − U(V ν ,V ∗µ) ,

where Fµν = ∂µAν − ∂νAµ, Vµν = ∂µVν − ∂νVµ, and
Wµν = V ∗

µVν − V ∗
ν Vµ. Let us choose:

U = −M2V ∗
µV

µ − α

2
(V ∗

µV
µ)2 − β

2
(V ∗

µV
∗µ)(VνV

ν)

Yulia Galushkina



Introduction
Complex vector fields with dipole interaction

Nontopological solitons
Electromagnetic hedgehogs

Conclusion

Integrating out the electromagnetic field

Lagrangian of the model leads to the equation

∂µF
µν = −iγ∂µW

µν ,

which, in absence of external fields, can be integrated to yield

Fµν = −iγW µν , Wµν = V ∗
µVν − V ∗

ν Vµ.

We obtain following effective Lagrangian:

L = −1

2
V ∗
µνV

µν +M2V ∗
µV

µ +
α̃

2
(V ∗

µV
µ)2 +

β̃

2
(V ∗

µV
∗µ)(VνV

ν)

where α̃ = α− γ2 and β̃ = β + γ2.
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Dual theory

We can also consider interaction i γ̃
2 F̃µνW

µν , where
F̃µν = εµνρλF

ρλ and γ̃ is a dimensionless constant. Integrating out
the electromagnetic field, we obtain qualitatively the same
Lagrangian as in the P-even theory. The effective potential is:

Ũ = −M2V ∗
µV

µ − α̃

2
(V ∗

µV
µ)2 − β̃

2
(V ∗

µV
∗µ)(VνV

ν),

where α̃ = α+ 4γ̃2 and β̃ = β − 4γ̃2.
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Ansatz

To facilitate the study, we switch to the dimensionless units as
follows,

V ν =
MṼ ν√

|α̃|
, κ =

β̃

|α̃|
, xixi =

r2

M2
, t =

τ

M
. (1)

We use the following ansatz (Loginov, PRD, 2015):

Ṽ0 = iu(r)e−iwτ , Ṽ i =
x̃ i

r
v(r)e−iwτ .

For this ansatz W µν is nontrivial, so we can localize
electromagnetic field.
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Kinematic stability of the solitons
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E/M − Q as a function of Q for vector solitons with α̃ = 1 and
κ = β̃/|α̃| = −0.55.
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Electromagnetic hedgehogs

The equatorial cross-section of the electric hedgehog with
κ = β/α = −0.9, w = 0.998, and γ ≪ α. The arrows indicate the
value |E⃗ |/M2 and the direction of the electric field. Note that the
electromagnetic field decays exponentially (unlike in monopoles).
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Conclusion

We obtained kinematically stable configuration of localized
electromagnetic field in a theory without charges.
There is a possibility of partial UV-completion of vector model,
e. g. with a scalar field (Herdeiro, Radu, dos Santos Costa
Filho, 2023).
Our result can be generalized on the non-abelian theory with
an interaction i(V †

µFµνVν) + h.c .

There is a possibility of Bose-stars with a similar structure.
They may demonstrate a wider range of stable configurations.
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Appendix 1: Coupling constants

If we consider our vector field as a dark matter candidate, it is
natural to set α, β ≫ γ. The applicability of semiclassical approach
requires |α|/4π ≪ 1, |β|/4π ≪ 1.
The strong coupling scale of the theory can be estimated as
Λ ∼ M

√
4π/α1/4 (Porrati, Rahman, Nucl. Phys., 2008). On the

other hand, the physical field V µ scales as 1/α1/2. Requiring the
physical field amplitude stay below the cutoff leads to the bound
α > 1/(4π)2.
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Appendix 2: Condensate

There are two types of relevant condensates. The first one is

Ṽ0 = 0, Ṽ 1 =

√
1− w2

±1 + κ
e−iwτ , Ṽ i = 0 , i = 2, 3

The second condensate is of the form

Ṽ0 = iue−iwτ , Ṽ 1 = ve−iwτ , Ṽ i = 0 , i = 2, 3
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Appendix 3: Soliton profiles
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Vector soliton at κ = −0.9 and w = 0.998. This solution is
kinematically stable, E < MQ.
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Appendix 3: Soliton profiles
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Vector soliton at κ = −0.9 and w = 0.99. This solution is
kinematically stable, E < MQ.
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Appendix 3: Soliton profiles
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Vector soliton at κ = −0.55 and w = 0.96. This solution is
kinematically stable, E < MQ.
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