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Axion DM phenomenology

QCD axions 
• Forma,on of axion miniclusters (Hogan,Rees ’88; Kolb,Tkachev ’93/94; Zurek+ ’07)   

– relevant for direct detec,on experiments 

– poten,ally observable in fast radio bursts, ,dal streams, microlensing  (Tkachev ’15, Tinyakov+ ’16, Fairbairn+ ’17) 

• Forma,on of axion stars (Tkachev ’86; Levkov+ ’18, Eggemeier & JN ‘19)  

Ultralight axions („fuzzy dark ma^er“, FDM Hu+ ‘00) 
• Suppression of small-scale perturba,ons  („WDM-like“) 

– high-z luminosity func,ons (Bozek+ ’15, Schive+ ’16, Corasani,+ ’17, Menci+ 
’17) 

– Lyman-α forest (Iršič+ ’17, Armengaud+ ’17,  Rogers+ ‘20) → m ≳ 10-20 eV 
– reioniza,on (Bozek+ ’15; Schneider ’18; Lidz, Hui ’18) 

• Forma,on of coherent solitonic halo cores („SIDM-like“) 
– cusp-core etc., halo substructure (Marsh,Silk ’13, Schive+ ’14, Marsh,Pop ’15, 

Calabrese,Spergel ’16, Du+ ’16) 

• Incoherent interference pa^erns and granularity on scales of 
λdB ~ 1 … 100 kpc 
– „quasi-par,cle relaxa,on“ → dynamical fric,on / hea,ng / 

diffusion (Hui+ ’17, Bar-Or ´18, Marsh & JN ´18) („PBH-like“)   

Schive+ ’14

Figure 2.13: Halo mass function for FDM computed from di↵erent approaches com-
pared to CDM.

the cumulative number density of halos with M > 106M� at z = 6 for di↵erent FDM

masses computed from the HMF we obtained numerically (soild curve) compared to

the 1 � �, 2 � � and 3 � � regions of the observed cumulative number density from

[3]. We also show the cumulative number density computed from the fitting HMF

by [32] and the ST HMF for FDM. Similar to the previous conclusion, the ST HMF

overestimates the number of halos thus gives a less strong constraint on the FDM

mass. For smaller FDM masses, the cumulative number density we obtain has a

larger deviation from the one obtained by considering the fitting HMF Eq. (2.105).

But for FDM with ma > 5⇥ 10�22eV, our results are very close to the one computed

from Eq. (2.105). Thus we get a similar lower constraint of 7 ⇠ 8 ⇥ 10�22eV on the

FDM mass as in [3].

2.4.2 Validating Merger Trees

To check the consistency of the merger tree algorithm, we run merger trees with 1000

trees per decade in mass for haloes with masses in the range [4⇥ 108, 4⇥ 1013]M� at

z = 0. The mass resolution is set to 2⇥ 108M�.

We compare the HMF obtained by counting the haloes in our merger trees with

the one derived from solving the excursion set problems at di↵erent redshifts. The
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>  DM from vacuum realignment: 

§  In early universe, axion frozen at ran-
dom initial value 

§  Later, field feels pull of mass to-
wards zero and oscillates around it   

§  Spatially uniform oscillating classical 
field  = coherent state of many, extre-
mely non-relativistic particles = CDM 

>  If PQ symmetry broken during 
inflation and not restored after-
wards (pre-inflationary PQ brea-
king scenario) 

§  Axion CDM density depends on sing-
le initial angle during inflation and 

Axion Cold Dark Matter 

[Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....] 

[Saikawa]    

K. Saikawa



Eri II: A Fossil from Reionization 3

Figure 1. ACS color image of Eri II. Since we only have data in two filters, the F606W image is used for the blue channel, the F814W
image is used for the red channel, and the green channel is the average of the two. The ACS field of view subtends approximately the
half-light radius of Eri II, so the galaxy itself is not visually obvious in the image even though essentially all stars detected in the field are
Eri II members. The cluster is visible as a much denser concentration of stars slightly below and to the left of center, and is highlighted in
a 2800 ⇥ 2800 inset. At the distance of Eri II (Section 3.1), 10 corresponds to 99 pc.

by Garofalo et al. (in prep.).
To characterize the photometric uncertainties and

completeness as a function of color and magnitude, over
5 ⇥ 106 artificial stars were blindly inserted and recov-
ered from the images, adding small numbers of stars at a
time to avoid significantly a↵ecting the stellar crowding,
and including the e↵ects of charge transfer ine�ciency
on the recovered S/N. The 90% completeness limits are
m606 = 28.70 and m814 = 29.15, and 50% completeness
is reached at m606 = 29.36 and m814 = 29.74.
We used the brightest stars in the field (m606 < 21.5)

to place the HST astrometry in the reference frame of
the second data release (DR2; Gaia Collaboration et al.
2018; Lindegren et al. 2018) of the Gaia mission (Gaia
Collaboration et al. 2016). Based on the positions of 29
stars with both HST and Gaia positions, the native HST

astrometry was o↵set from the Gaia coordinates by 0.0048.
After correcting this o↵set, the HST coordinates of the
bright stars agree with the Gaia measurements with a
standard deviation of 0.0002. All coordinates given in this
paper have been shifted to the Gaia frame.

3. THE STAR FORMATION HISTORY OF ERI II

3.1. Metallicity Distribution, Distance, and Reddening

In order to provide a zero point for comparing theoret-
ical isochrones to the observed color-magnitude diagram,
the metallicity of Eri II stars, the distance to the galaxy,
and the reddening along the line of sight must be deter-
mined first.
Li et al. (2017) measured the metallicities of 16 stars

in Eri II based on spectroscopy of the Ca triplet absorp-
tion lines. We used those metallicities to construct a
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FDM solitonic cores are observed to form in simula-
tions of dwarf galaxies with M ⇡ 1010M� when ma ⇡

10�22 eV. They form by direct collapse almost instanta-
neously when the halo virialises. For larger FDM masses,
however, it is not clear whether soliton formation in dwarf
galaxies will proceed in the same way, since the length
scales involved are much longer than the de Broglie wave-
length. The time scale for soliton formation by wave
condensation increases at larger particle masses [30], and
thus solitons may not have had time to form in all halos
for all FDM masses.

Assuming it forms, the central soliton has the den-
sity profile of the ground state of the Schrödinger-Poisson
equation. The solution ⇢sol(r) is a one parameter family
described by the core radius, rc, and has a flat central
density, @r⇢|0 = 0. The soliton mass within the core ra-
dius is observed to follow a scaling relation with the host
halo mass, which at z = 0 is given by [31]:

Msol =
M0

4

✓
Mh

M0

◆1/3

, (2)

where the scale M0 ⇡ 4.4 ⇥ 107m�3/2
22

M� is approxi-
mately the Jeans mass. The relation Eq. (2) can be used
to fix rc in terms of Mh:

rc = 740
⇣

ma

10�21 eV

⌘�1
✓

Mh

107M�

◆�1/3

pc . (3)

The central soliton has some favourable consequences,
e.g. its stabilising e↵ect on the cold clump in Ursa Mi-
nor [32], a possible explanation for cored density profiles
in dSphs [26, 33, 34] and UFDs [35], help alleviating the
“too big to fail” problem [6, 36], and an explanation for
excess mass in the centre of the MW [37] (though the
cusp-core problem in M ⇡ 1011M� galaxies is exacer-
bated [36]). These observations, as well as other hints
from the small-scale structure of DM [6, 8, 38], point to
a preferred FDM mass m22 = O(few).

Eridanus II (Eri II) is a UFD with a centrally located
star cluster. Its properties are inferred from observations
reported in Refs. [10, 39]. Eri II is located at a distance
of 370 kpc from the centre of the MW. The mass within
the half-light radius is estimated as MEII = 1.2+0.4

�0.3 ⇥

107 M�, 1D velocity dispersion �v = 6.9+1.2
�0.9 km s�1, and

central DM density ⇢DM = 0.15 M� pc�3. The central
star cluster has a half light radius rh = 13 pc, age TEII =
3 ! 12 Gyr and mass M? = 2000M�.

We can use these basic properties of Eri II to assess the
relevant FDM scales. The total number of MW subhalos
in the 2� range around MEII (Mlow = 4⇥106M�, Mup =
2 ⇥ 107M�) is

nEII(ma) =

Z Mup

Mlow

d ln M
dnsub(ma)

d ln M
, (4)

where dnsub/d ln M is the subhalo mass function (see
Fig. 1). We estimate the FDM subhalo mass function

10�22 10�21 10�20

ma [eV]

10�12

10�10

10�8

10�6

10�4

10�2

100

102

104

n
(M

E
II
)

nCDM

nFDM

FIG. 1. Number of subhalos in the range of the Eri II half-
light mass as a function of FDM mass ma. Solid: from merger
trees, modified barrier and core stripping; dotted: no core
stripping; dashed: sharp-k filter. We demand FDM produce
at least one subhalo in the Eri II region (black dotted hori-
zontal line), and take the weaker bound as more conservative
given the mass function uncertainties. The horizontal red
lines show the CDM prediction, which FDM converges to in
the limit ma ! 1.

with the fits of Ref. [40], which uses the methods of
Refs. [6, 8, 41, 42] applied to numerical merger trees [43].
The exclusion on ma implied by the existence of Eri II
is found by solving nEII(ma) = 1, which gives the ap-
proximate bound ma & 8 ⇥ 10�22 eV. As a comparison
we also test the subhalo mass function of Refs. [44–46]
computed using the sharp-k filtering method [44]. This
gives the stronger bound ma & 8 ⇥ 10�21 eV. We take
the weaker bound as more conservative given the large
theoretical uncertainty in the subhalo mass function. A
similar bound would apply to the sharp-k filter if the total
mass of Eridanus II is significantly larger than the mass
contained within the half-light radius. A more crude es-
timate based on the mass function cut-o↵ alone implies
ma & 10�21 eV. At the limit ma = 10�21 eV we find
that the soliton mass is of order MEII, and the UFD is a
single core remnant (see also Ref. [47]). For larger values
of ma, Eri II will have a granular outer halo in addition
to the core.

The stability of the star cluster in Eri II can be taken
to imply the existence of a DM core with radius rc � rh.
We estimate the FDM mass preferred by a core in Eri II
by setting ⇢sol(rh) = ⇢DM, which implies ma ⇡ 10�20 eV.
Note that this is significantly larger than the FDM mass
required for cored profiles in UFDs Draco II or Trian-
gulum III [35], or dSphs Fornax and Sculptor [33, 34]
to be explained by the presence of a soliton. Assum-
ing that the total mass of Eri II is given by MEII, us-
ing Eq. (3) with Mh = MEII we can fix rc = rh and
solve for ma to find the highest possible FDM mass con-
sistent with the star cluster residing within the soliton

10°21 10°20 10°19

ma [eV]

0.0

0.2

0.4

0.6

0.8

1.0
≠

a
/≠

d

cluster
inside
the core

cluster
can be
outside
the core

Gravita5onal hea5ng constraints:  
Star cluster in UFD Eridanus II  

(Marsh & JN ´19, PRL 123, 051103)

Simon+ ´20

central star cluster

resonance

diffusion / hea,ng

many uncertain,es, 
need simula,ons!

expected number of subhalos:



In the Newtonian limit, ULAs obey the Schrödinger-Poisson (SP) equa,ons: 

Dynamics of gravita,onally interac,ng random waves equivalent to collisionless ma^er on large 
length scales / short ,me scales. 
Madelung / fluid formula,on: 

„Quantum Reynolds number“ (compare advec,on and quantum pressure terms): 

Gravita,onal relaxa,on ,me (e.g. Levkov+ ’18): 
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Siddhartha & Uréna-López 2003) or even one-dimensional (Hu
et al. 2000) to study this problem. These simplifications may
not capture what actually results in a three-dimensional system
with realistic initial conditions. In particular, the existence of a
flattened core has been derived or inferred from these previous
works of one-dimensional system or with spherical symmetry.
In this paper, we report high-resolution fully three-dimensional
simulations for this problem. Surprisingly, our simulations re-
veal that the singular cores of bound objects remain to exist even
when the core size is much smaller than the Jean’s length.

In Section 2, we provide an explanation for the possible
existence of the Bose–Einstein state for the extremely low
mass bosons under investigation here. We then discuss two
different representations of ELBDM and the evolution of linear
perturbations for the two representations. In Section 3, the
numerical scheme and initial condition are described. We
present the simulation results in Section 4. In Section 5, we
look into the physics of collapsed cores with detailed analyses
from different perspectives. Finally, the conclusion is given in
Section 6. In the Appendix, we present results of one- and two-
dimensional simulations and demonstrate that singular cores do
not occur in one- and two-dimensional cases.

2. THEORY

2.1. Bose–Einstein Condensate

A Bose–Einstein condensate (BEC) is a state of bosons cooled
to a temperature below the critical temperature. BEC happens
after a phase transition where a large fraction of particles
condense into the ground state, at which point quantum effects,
such as interference, become apparent on a macroscopic scale.
The critical temperature for a gas consisting of noninteracting
relativistic particles is given by (Burakovsky & Horwitz 1996)

Tc ∼
(nch

3m

)1/2
, (1)

where the Boltzmann’s constant and speed of light have been
set to unity. Given the extremely low particle mass assumed
here, Tc is derived from the relativistic Bose–Einstein particle–
antiparticle distribution with the chemical potential set to
particle mass m. Here, the “charge” density nch ≡ n+ − n−,
where n+ and n− are the number densities of particles and
antiparticles in excited states. On the other hand, we have
nch ∼ (m/T )n+, and it follows that Tc ∼

(
n+
3T

)1/2. Note that
n+ scales as a−3 and T as a−1, and it follows Tc scales as
a−1. It means that when T is below Tc at some time after a
phase transition, the temperature will remain subcritical in any
later epoch. As an estimate, if we assume 1% of ELBDM to
be in the excited states after its decoupling, the current critical
temperature becomes

Tc = 3 × 10−14
( m

eV

)−1/2
(

T

eV

)−1/2

eV. (2)

Substituting m ∼ 10−22 eV and T ∼ 10−4 eV, the same as
the present photon temperature, we find that the current critical
temperature Tc = 0.3 eV % T . Hence ELBDM, if exists and
accounts for the dark matter, may very well be in the BEC
state ever since a phase transition in the early universe. Despite
ELBDM particles in the excited state are with a relativistic
temperature, almost all particles are in the ground state and
described by a single nonrelativistic wave function.

2.2. Basic Analysis

The Lagrangian of nonrelativistic scalar field in the comoving
frame is

L = a3

2

[
ih̄

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
+

h̄2

a2m
(∇ψ)2 − 2mV ψ2

]
,

(3)
and the equation of motion for this Lagrangian gives a modified
form of Schrödinger’s equation (Siddhartha & Uréna-López
2003):

ih̄
∂ψ

∂t
= − h̄2

2a2m
∇2ψ + mV ψ, (4)

where ψ ≡ φ(n0/a
3)−1/2 with φ being the ordinary wave

function, n0 the present background number density, and V is
the self-gravitational potential obeying the Poisson equation,

∇2V = 4πGa2δρ = 4πG

a
ρ0(|ψ |2 − 1). (5)

The only modification to the conventional Schrödinger–Poisson
equation is the appearance a−1 associated with the comoving
spatial gradient ∇, and the probability density |ψ |2 to be
normalized to the background proper density ρ/m. In the above,

ρ0 ≡ 3H 2
0

8πG
Ωm = mn0 (6)

is the background mass density of the universe.
To explore the nature of the ELBDM, we first adopt the

hydrodynamical description to investigate its linear evolution.
This approach is not only more intuitive than the wave function
description, its advantage will also become apparent later. Let
the wave function be

ψ =
√

n

n0
ei S

h̄ , (7)

where n = n̄a3, the comoving number density and n̄ is
the proper number density. The quadrature of Schrödinger’s
equation can be split into real and imaginary parts, which
become the equations of acceleration and density separately,

∂

∂t
v +

1
a2

v · ∇v +
∇V

m
− h̄2

2m2a2
∇

(∇2√n√
n

)
= 0 (8)

∂n

∂t
+

1
a2

∇ · (nv) = 0, (9)

where v ≡ ∇S/m is the fluid velocity. There is a new term
depending on the third-order spatial derivative of the wave
amplitude

√
n in the otherwise cold-fluid force equation. This

term results from the “quantum stress” that acts against gravity,
and it can be cast into a stress tensor in the energy and
momentum conservation equation (Chiueh 1998, 2000). The
quantum stress becomes effective only when the spatial gradient
of the structure is sufficiently large.

The fluid equations, Equations (5), (8), and (9), are linearized
and combined to yield

∂

∂t
a2 ∂

∂t
δn − 3H0

2Ωm

2a
δn +

h̄2

4m2a2
∇2∇2δn = 0. (10)

Upon spatially Fourier transforming δn, it follows

d

dt
a2 dnk

dt
−

(
3H0

2Ωm

2a

)
nk +

h̄2k4

4m2a2
nk = 0, (11)
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2. Theorie

Als Randbemerkung sei darauf hingewiesen, dass man auch für komplexe Felder
im newtonschen Limit das Schrödinger-Poisson-System mit der Ersetzung

� = �e≠ imc2t
~

erhält sofern angenommen wird, dass nur Moden e≠ik
µ

xµ mit k
0

> 0 besetzt sind.

2.3. Madelung-Transformation

Die Madelung-Transformation ist eine äquivalente Formulierung der Schrödinger-
Gleichung. Hierzu nimmt man den Ansatz

� =
Û

fl(x, t)
m

exp(iS(x, t)/~) (2.14)

mit reellen Funktionen fl und S. Dies eingesetzt in die Schrödinger-Gleichung und
Division durch exp(iS/~) ergibt

i~ fl̇

2Ô
fl

≠
Ô

flṠ(x) = ≠
~2

2m
Ò(ÒÔ

fl + i

~
Ô

flÒS) + mV
Ô

fl

= ≠
~2

2m
(Ò2Ô

fl + i

~
Òfl

fl
ÒS + i

~
Ô

flÒ
2
S ≠

1
~2

Ô
fl(ÒS)2)

+ mV
Ô

fl (2.15)

Der Imaginärteilteil dieser Gleichung lässt sich mit der Substitution v = m
≠1

ÒS

schreiben als

fl̇ + Ò(flv) = 0 (2.16)

und der Realteil als

1
m

Ṡ + 1
2m2 (ÒS)2 = ≠(Q + V ) (2.17)

wobei Q = ≠
~2

2m2
ÒÔ

flÔ
fl

. Der Gradient des Realteils ist dann

v̇ + (v · Ò)v = ≠Ò(Q + V ) (2.18)
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Navier-Stokes equations, we can compare the nonlinear velocity gradient term on the left-hand side to
the new quantum pressure term for gradients ⇠ 1/R (and a = 1):

Q/R

v2/R
'

~2

m2R3

R

v2
=

✓
�dB

R

◆2

(32)

with the characteristic coherence length of the scalar field �dB = ~/mv. Comparing Q with VN gives
the same result for virialized systems whose dynamical time equals their crossing time R/v.

Equation (32) suggests that the structure of halos consisting of scalar field dark matter should be
similar to CDM halos on length scales of order R as long as R � �dB with

�dB ' 0.2

✓
10�22 eV

m

◆ ✓
100 km/s

v

◆
kpc , (33)

if v is the virial velocity of the halo. Conversely, we expect new e↵ects on scales of the halo radius for
dwarf galaxies (with virial velocities of order 10 km/s) if m ⇠ 10�22 eV.

What is the characteristic timescale after which significant deviations from the evolution of CDM
halos under purely gravitational interactions become apparent? Again, several di↵erent arguments give
approximately the same answer, so let us begin with the gravitational scattering time for wave scattering
in a condensate. In the vacuum, the scattering rate � ⇠ ⌧�1 scales with the scattering cross section
�g, the mean relative velocity hvi =

p
2v, and the number density n = ⇢/m, � ⇠ �g hvi n. If the final

state is macroscopically occupied, Bose-Einstein stimulation enhances the rate by the axion phase space
density (or occupation number)

N =
h3 n

Vp

=
(2⇡~)3 n

(4⇡/3)(mv)3
=

6⇡2~3 n

m3v3
.

N is a very large number if axions make up a significant fraction of dark matter. Correspondingly, the
scattering time can be su�ciently short to become cosmologically relevant. It is given by

⌧ '
m3v2

6⇡2
p

2~3 n2�g

. (34)

The momentum-transfer cross section �g for Rutherford scattering is �g ' ⇡G2m2v�4 log ⇤ with ⇤ =
#max/#min ⇠ R/�dB, yielding

⌧ '
mv6

6
p

2⇡3~3G2 n2 log ⇤
. (35)

Using the virial velocity v2 = GMR�1 of a halo with uniform density ⇢ = nm ⇠ MR�3 in Eq. (35),
[38] point out that ⌧ scales as

⌧ ⇠ 10�2
⇥

✓
�dB

R

◆�3

tcr , (36)

where tcr = R/v is the halo crossing time. As above, this suggests that axion dark matter halos
behave similarly to CDM halos on dynamical timescales if �dB ⌧ R. On the other hand, we may
expect interesting new e↵ects over periods of order O(⌧). Such e↵ects include gravitational heating and
relaxation in FDM halos, to be discussed in Section 4.3, and the formation of solitonic objects by wave
condensation that we will turn to next.
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Simula5ons with bosonic dark maSer
Different scales / physics require different numerical methods. 

1. N-body with modified ini5al condi5ons: 
CDM-like dynamics, linear / weakly nonlinear scales  →  useful for large-scale structure 
constraints on FDM (Ly alpha forest, reioniza,on, high-z luminosity func,ons etc.) or 
QCD axion miniclusters  

2. Madelung (fluid) formula5on (SPH, PM, or finite volume): 
same as above, includes „quantum pressure“ effects, resolu,on requirements and 
validity unclear 

4. Schrödinger-Poisson formula5on (finite difference or pseudo-spectral): 
full wave-like dynamics, requires phase resolu,on, can only handle rela,vely small 
boxes, nonlinear scales →  useful for isolated halos or small cosmological boxes  

5. Hybrid method (N-body on coarse grids, Schrödinger-Poisson on finest grid): 
dynamics CDM-like on large scales, wave-like on small (nonlinear) scales →  useful for 
zoom-in simula,ons in cosmological boxes



AxioNyx 
(Schwabe, Gosenca, Behrens, JN, Easther ’20, PRD 102, 083518)

Public code for mixed FDM+CDM+hydro simula,ons 
based on AMReX 
2nd and 6th order pseudo-spectral Schrödinger solvers

3

 512 kpc

16 kpc

4 kpc

FIG. 1. Slice through the final FDM density field with 30% FDM and 70% CDM. The central region is highly refined, and
resolves the FDM granules which form after shell crossing. Rectangular boxes show regions with the same level of refinement
– the box edges are coloured such that they are darker at higher levels of refinement.

cores, quantified by the negligible dependence of the so-
lution time with respect to the number of processors for
a fixed problem size per processor. We implement two
di↵erent pseudospectral schemes, one at second order
and the other at sixth order. The second order scheme
matches that implemented in PyUltraLight

5 [51]. The
sixth order scheme replicates the method described in
Ref [48]

 (t+�t) =
↵Y

e
�imd↵�tV↵(x)/~

e
�i~c↵�tk2/2ma2

 (t) ,

(3)

with weights summarized in Table I. Other higher-order
algorithms could easily be implemented.

5 https://github.com/auckland-cosmo/PyUltraLight

Eulerian grids used to deposit information from N-
body particles in cloud-in-cell simulations appropriate for
CDM are typically only adaptively refined in over-dense
regions to correctly capture the strong dynamics in fila-
ments and halos. Conversely, in FDM simulations the ve-
locity is inferred from the gradient of the wave function’s
complex phase; even low density regions may have to be
refined if they contain high-speed flows. Consequently,
we employ the Löhner error estimator [52], which is also
implemented in Enzo [53] and FLASH [54] and was also
used with FDM cosmological simulations in Refs [17, 55].
However, as in Ref. [17], we prohibit grid refinement in
regions below a certain density, chosen so that their de-
tailed behaviour does not significantly alter the overall
dynamics.

The power of adaptive refinement is demonstrated in
Figure 1, which shows the final snapshot of a spherical
collapse with 30% FDM and 70% CDM. Six levels of re-
finement were used, increasing the resolution by a factor



Spherical Collapse

v =c 7.5
2π

mrc

ℏ

Schroedinger-Vlasov
correspondence:

Maxwellian FDM
Powerspectrum of
central region
coincides well with
particle velocity
dispersion.
Outer radial
density profiles
have constant
FDM/CDM density
ratio

For f>0.1 a soliton forms with velocity                   close to
maximum in spectrum indicated by dashed line



New Hybrid Method

Goal:

AMR simulation
Particle method on low resolution levels
Finite-difference method on finest level
Important: Boundary conditions between methods

Madelung transformation:
Initial phase:
Phase evolution:
Construction of wavefunction:
Gauss kernel:

Ψ = A exp[−iSm/ℏ]

∇ ⋅ v =0 a ∇ S−1 2
0

=dt
dSi v −2

1
i
2 V (x )i

Ψ(x) = W (x−∑i x )A ei i
i(S +v ⋅a(x−x ))m/ℏi i i

Goal:

AMR simulation
Particle method on low resolution levels
Finite-difference method on finest level
Important: Boundary conditions between methods

W (x− x ) =i exp [ −
π3/2

γ Δ x
3/2 3

γ(x− x ) ]θ(x−i
2 x )i



The AGORA halo in FDM (B. Schwabe)

• AGORA High-resolu,on Galaxy Simula,ons Comparison Project (Kim + ’14, 
ApJS 210, 14) 

• „proof-of-concept“ halo: M = 1.7 x 1011 Msol , quiescent merger history 

• re-run with FDM ini,al condi,ons and hybrid N-body / SP method 
(Schwabe, JN ’21, in prep.)

Agora Simulation

DM-only comparison run (60 Mpc/h) between various codes:
zoom-in simulation focusing on isolated halo

Axionyx N-body run with
CDM initial conditions

Axionyx N-body run with
FDM initial conditions



The AGORA halo in FDM (B. Schwabe)Gauss Beam Reconstruction

Restart FDM N-body
simulation at z=3:
Reconstruct wavefunction
at amr level 11 in the
inner most halo region
(virial radius at 50kpc)
Add 3 finite difference
levels

The granular structure and central soliton
is clearly visible



The AGORA halo in FDM (B. Schwabe)Agora Simulation

FDM Powerspectrum and
underlying particle velocity
dispersion correspond well to
each other.
Halo velocities have not yet
relaxed into Maxwell spectrum
(but do so later on)
Soliton velocity (grey line) at
peak in spectrum
FDM radial density profile with
soliton core and NFW outer tail



II. QCD axions

Andreas Ringwald  | Axion Cold Dark Matter, Axion Dark Matter, Stockholm, Sweden, I, 5 – 9 November 2016 |  Page 20 

Axion Cold Dark Matter 

>  If Peccei-Quinn symmetry re-
stored after inflation (post-in-
flationary PQ breaking scena-
rio) 

§  Vacuum realignment contribution 
depends on spatially averaged 
initial misalignment angle and 

§  Upper limit on      from requirement 
that realignment contribution 
should not exceed DM abundance 
gives lower limit on axion mass: 

    using lattice result on        ,   

 

 

[Borsanyi et al. `16] 

[Saikawa]    

K. Saikawa



Forma5on of axion miniclusters 
(see also talks by Javier Redondo and David Ellis)

N-body simula,ons of nonlinear density perturba,ons a|er QCD phase transi,on 
1.  Ini,al condi,ons from simula,ons of the complex axion field (Vaquero, Redondo, 
Stadler ´18):

Figure 2: 3D!2D projection plots of the axion density squared
R

dz(%(x)/%̄)2 for several values of ⌧ . The
densest structures distinctly appear in the plots for the 4 stages of the evolution of axion dark matter simu-
lations: string-network scaling (up-left to up-right), domain walls attached to strings pulling the strings into
destruction (down-left) and frozen dark matter field with axitons (down-right). The simulation parameters are
L = 6L1, msa = 1.0, n = 7 and N = 4096.
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Forma5on of axion miniclusters 
(see also talks by Javier Redondo and David Ellis)

N-body simula,ons of nonlinear density perturba,ons a|er QCD phase transi,on 
2.  10243 par,cle simula,on of gravita,onal evolu,on (Eggemeier+ ’20, PRL 125, 041301):

0.86 pc

Small-box simula,on challenge, part  I



Forma5on of axion miniclusters 
(Eggemeier+, ’20, PRL 125, 041301) 

bound frac,on:

number of  
miniclusters:

halo mass func,on:

before 
equality

a|er 
equality



Axion star forma5on in miniclusters 
(Eggemeier, JN ’19, PRD 100, 063528)

Mass grows as t1/2 in agreement with wave 
condensa,on (Levkov et al. 2018) 

predic,on: growth ~ t1/8 a|er reaching 
virial temperature of minicluster



Axion star forma5on in miniclusters 
(Eggemeier, JN ’19, PRD 100, 063528)

Mass grows as t1/2 in agreement with wave 
condensa,on (Levkov et al. 2018) 

confirmed: growth ~ t1/8 a|er reaching 
virial temperature of minicluster

Figure 4: Same as Fig. 2 from Jiajun.

Figure 5: Same as Fig. 2, but the data are divided into 500 time bins for each L. The colored lines show
the mean values while the shaded regions show the 1� � intervals.
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Chen+ ’20, arXiv:2011.01333)



Gravita5onal structure forma5on during  
Early MaSer Domina5on (B. Eggemeier)

• Early ma^er dominated 
phase a|er the end of 
infla,on: inflaton 
condensate is cold, 
nonrela,vis,c, 
gravita,onally unstable 
→ SP equa,ons work 
(Musoke+ ’19) 

• Forma,on of inflaton 
clusters and inflaton stars 
(JN, Easther ’20;  Eggemeier+ ’21)

N-body simulation with physical box size ~10-20 m 

Small-box simula,on challenge, part  II



Inflaton Halo Mass Function

N-body:

spurious halos below

⇠ 0.1Mh,end

Peak-Patch:

less low-mass and more

high-mass halos than expected

at N = 20

Press-Schechter:

dn

d lnM
=

1

6

⇢̄

M
⌫f (⌫)

�
2
(1/R)

�2c

Mass distributions in general agreement

Gravita5onal structure forma5on during  
Early MaSer Domina5on (B. Eggemeier)



Zooming into isolated halos

Hybrid simulations performed with AxioNyx: N-body on large scales, SP with FD on small scales

At the boundary: Classical Wave Approximation (CWA)

L = 50 lu, 512
3
root grid

Same ICs as before

but 2 additional static

refinement levels

centered on Lagrangian

patch of selected halo

In total, up to 8 levels with refinement factor of 2

! formation of solitonic core (inflaton star)

Gravita5onal structure forma5on during  
Early MaSer Domina5on (B. Eggemeier)



Inflaton Stars: profiles, oscillation, and mass growth

soliton profile:

⇢⇤(r) ' ⇢0

✓
1 + 0.091

⇣
r
r⇤

⌘2
◆�8

core-halo relation: M⇤ ⇠ M
1/3
h

Quasinormal soliton mode:

f⇤ = 5.2⇥ 10
4
⇣

⇢⇤
1021 mu/l3u

⌘1/2
t
�1
u

Mass growth determined by

⌧cond '
p
2b

12⇡3

�
m
~
�3 v6

vir
G2⇢2 log⇤ , ⇤ ⇠ mrvir

~vvir

Results are consistent

with previous FDM/ALP

simulations

Gravita5onal structure forma5on during  
Early MaSer Domina5on (B. Eggemeier)



Axio
ns

random final thoughts
• Physics of soliton (boson star) forma,on by classical wave 

condensa,on, mass satura,on, core-halo rela,on etc. broadly 
understood 

important details s,ll missing, e.g. is there always one soliton per halo? do 
they condense or remain as residuals of ini,al coherence? importance of 
oscilla,ons?… 

• You come for the solitons but stay for the granules 
lots of unexplored territory for relaxa,on effects by large density 
fluctua,ons, similari,es to PBH constraints 

• FDM is already an endangered DM species 
mass window closing, with Ly-alpha forest and gravita,onal hea,ng on one 
side and BH superradiance on the other 
…but you can always retrain and work on QCD axion stars or inflaton stars!


