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Local Potts model

Classic Potts model

H =
∑

i ,k∈M

Jikδ(σi , σk )

Jik – interaction, σ ∈ S ,S = {1, 2, ..., q}
Defined on the regular lattice

Common problems

1 Finding the vacuum state of the system

2 Calculating partition function Z =
∑
{σi}

e−βH

Figure 1: Typical
regular lattices
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Nonlocal Potts model

Defined on a random lattice

H =
∑

i ,k∈M

Jikδ(σi , σk ),

Jik =

{
J, R − δ

2 ≤ |i − k | ≤ R + δ
2

0, otherwise,
δ � R.

R = 1

L

L

Figure 2: Schematic
representation of the
model on 2d random
lattice

The number of neighbors (in the context of chosen metric)

• Regular lattice – the same for any spin, pretty small, depends
on the geometry of the lattice

• Random lattice – obeys Gaussian distribution, not bounded
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Physical cases

• Interaction with closest neighbors (local)
: Ising model
: Potts model
: ZN model

• Interaction with all particles (massless field)
: Gravitational interaction
: Electromagnetic interaction

• Interaction at finite distance
: network models
: chromatic clusters in images of real objects
: problems of combinatorial topology
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Problems of combinatorial topology

Erdos-Hadwiger-Nelson (EHN)
problem

What is the minimal number of
colors q one must use to color the
Rd space in such a way that no two
points at unit distance are colored
identically?

Solutions
• R1: q = 2

• R2: 5 6 q 6 7

• R3: 6 6 q 6 15

Figure 3: R1

Figure 4: R2:
Moser’s spindle
and 7-color
hexagon tiling
wikipedia.org

Figure 5: R2: The
unit-distance
graph, q = 5
arXiv:1804.02385
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Setting up the problem

Hamiltonian
H = A

∑
x ,y

Jxyδi(x)i(y),

A – normalization factor, A = 1

The goal

Using supercomputer simulations find minima
of H and corresponding vacuum configurations
for q in range [2,7] for two dimentional random
lattice, starting from random configuration.

Vacuum states of such models have not been
investigated before.

Figure 6: The schematic
picture of energy zones.
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Neighbors distributions

〈n〉 = 2πRδ N
L2 – average number of neighbors.

Figure 7: L = 20, q = 4,N = 159155, δ = 0.02. Left: distribution of number of
neighbors, 〈n〉 = 50; right: distribution of number of neighbors which have the least
represented color.
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Minimization algorithm (simulated annealing)

Steps

1 Generate random configuration

2 Calculate its energy

3 Choose temperature reduction function, define Tini and Tfin

4 Choose random order of picking up particles using
Fisher-Yates shuffle algorithm

5 For each particle randomly pick new color. If the energy
decreased or stayed unchanged then accept new configuration.
In the case the energy increased configuration is accepted

with probability P = e−
E ′−E

T

6 Reduce temperature

7 Repeat steps starting from 4, while T > Tfin.
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An illustration of evolution of the system for q = 6
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Examples of configurations with minimal energies

Figure 8: Top row: q = 2,3,4; bottom row: q = 5,6,7
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Comparison of energy distributions

Figure 9: Top: q = 5 and q = 6; bottom: q = 6 and q = 7. On the base of 200
configurations for each color. The number of configurations with zero energy is 0 for
q = 5, 1 for q = 6, 170 for q = 7.
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Color symmetry breaking (static)

Figure 10: The ratio of number of particles with least number of particles to the whole
number of particles inside particular area. Top: q = 5, bottom: q = 3.
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Color symmetry breaking (static): summary

Figure 11: The ratio of least represented color to whole number of particles scaled by
q for L = 20, N = 159155
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Color symmetry breaking (dynamic)

Figure 12: The dynamic of changing in ratio of least represented color to whole number
of particles scaled by q in the process of minimization. Top: q = 6, bottom: q = 5.
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Color symmetry breaking (dynamic): summary

Figure 13: The dynamic of changing in ratio of least represented color to whole
number of particles scaled by q in the process of minimization

15 / 17



Conclusion

• The simulated annealing algorithm for finding ground states
of nonlocal Potts model is devised and implemented

• The result was improved sufficiently comparing to greedy
algorithm.

• For q = 5 no state with zero energy was found

• The study of vacuum energy for q = 6 requires additional
analysis.

• The breaking of color symmetry emerges for ground states
and it is the most prominent for q = 5
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Thank you for attention!
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