Nonlocal Potts model on random lattice and chromatic number of the plane

Aleksei Tanashkin, FEFU, Vladivostok

Scientific adviser - Vladimir Shevchenko, NRC "Kurchatov Institute", Moscow

Online workshop "Advanced Computing in Particle Physics", 2021

Local Potts model

Classic Potts model
$H=\sum_{i, k \in M} J_{i k} \delta\left(\sigma_{i}, \sigma_{k}\right)$
$J_{i k}$ - interaction, $\sigma \in S, S=\{1,2, \ldots, q\}$
Defined on the regular lattice
Common problems
(1) Finding the vacuum state of the system
(2) Calculating partition function $Z=\sum_{\left\{\sigma_{i}\right\}} e^{-\beta H}$

Figure 1: Typical regular lattices

Nonlocal Potts model

> Defined on a random lattice
> $H=\sum_{i, k \in M} J_{i k} \delta\left(\sigma_{i}, \sigma_{k}\right)$,
> $J_{i k}= \begin{cases}J, & R-\frac{\delta}{2} \leq|i-k| \leq R+\frac{\delta}{2} \\ 0, & \text { otherwise },\end{cases}$ $\delta \ll R$.

Figure 2: Schematic representation of the model on 2d random lattice

The number of neighbors (in the context of chosen metric)

- Regular lattice - the same for any spin, pretty small, depends on the geometry of the lattice
- Random lattice - obeys Gaussian distribution not bounded

Physical cases

- Interaction with closest neighbors (local)
\rightarrow Ising model
\rightarrow Potts model
$\rightarrow Z_{N}$ model
- Interaction with all particles (massless field)
\rightarrow Gravitational interaction
\rightarrow Electromagnetic interaction
- Interaction at finite distance
\rightarrow network models
\rightarrow chromatic clusters in images of real objects
\rightarrow problems of combinatorial topology

Problems of combinatorial topology

Erdos-Hadwiger-Nelson (EHN)

Figure 3: R^{1} problem
What is the minimal number of
colors q one must use to color the R^{d} space in such a way that no two points at unit distance are colored identically?

Figure 4: R^{2} : Moser's spindle and 7-color hexagon tiling wikipedia.org

Solutions

- $\mathrm{R}^{1}: q=2$
- $\mathrm{R}^{2}: 5 \leqslant q \leqslant 7$
- $\mathrm{R}^{3}: 6 \leqslant q \leqslant 15$

Figure 5: R^{2} : The unit-distance
graph, $q=5$
arXiv:1804.02385

Setting up the problem

Hamiltonian

$H=A \sum_{x, y} J_{x y} \delta_{i(x) i(y)}$,
A - normalization factor, $A=1$
The goal
Using supercomputer simulations find minima of H and corresponding vacuum configurations for q in range $[2,7]$ for two dimentional random lattice, starting from random configuration.

Vacuum states of such models have not been investigated before.

Figure 6: The schematic picture of energy zones.

Neighbors distributions

$\langle n\rangle=2 \pi R \delta \frac{N}{L^{2}}$ - average number of neighbors.

Figure 7: $L=20, q=4, N=159155, \delta=0.02$. Left: distribution of number of neighbors, $\langle n\rangle=50$; right: distribution of number of neighbors which have the least represented color.

Minimization algorithm (simulated annealing)

Steps

(1) Generate random configuration
(2) Calculate its energy
(3) Choose temperature reduction function, define $T_{i n i}$ and $T_{\text {fin }}$
(4) Choose random order of picking up particles using Fisher-Yates shuffle algorithm
5 For each particle randomly pick new color. If the energy decreased or stayed unchanged then accept new configuration. In the case the energy increased configuration is accepted with probability $P=e^{-\frac{E^{\prime}-E}{T}}$
(6) Reduce temperature
(7) Repeat steps starting from 4, while $T>T_{\text {fin }}$.

An illustration of evolution of the system for $q=6$

$$
\begin{gathered}
\langle n\rangle=50 \\
N=159155 \\
N_{m}=128675 \\
R=1.00 \\
\delta=0.02 \\
q=6 \\
\text { Offset }=4.5 \\
\text { Area }=121.0
\end{gathered}
$$

$$
\begin{gathered}
T=10.0 \\
E_{\text {total }}=401844.0 \\
E_{\text {ins }}=178801.0 \\
E_{\text {out }}=44242.0
\end{gathered}
$$

0.165	
0.169	
0.166	
0.167	
0.166	
0.167	\square
	\square

Examples of configurations with minimal energies

Figure 8: Top row: $q=2,3,4$; bottom row: $q=5,6,7$

Comparison of energy distributions

Figure 9: Top: $q=5$ and $q=6$; bottom: $q=6$ and $q=7$. On the base of 200 configurations for each color. The number of configurations with zero energy is 0 for $q=5,1$ for $q=6,170$ for $q=7$.

Color symmetry breaking (static)

Figure 10: The ratio of number of particles with least number of particles to the whole number of particles inside particular area. Top: $q=5$, bottom: $q=3$.

Color symmetry breaking (static): summary

Figure 11: The ratio of least represented color to whole number of particles scaled by q for $L=20, N=159155$

Color symmetry breaking (dynamic)

Figure 12: The dynamic of changing in ratio of least represented color to whole number of particles scaled by q in the process of minimization. Top: $q=6$, bottom: $q=5$.

Color symmetry breaking (dynamic): summary

Figure 13: The dynamic of changing in ratio of least represented color to whole number of particles scaled by q in the process of minimization

Conclusion

- The simulated annealing algorithm for finding ground states of nonlocal Potts model is devised and implemented
- The result was improved sufficiently comparing to greedy algorithm.
- For $q=5$ no state with zero energy was found
- The study of vacuum energy for $q=6$ requires additional analysis.
- The breaking of color symmetry emerges for ground states and it is the most prominent for $q=5$

Thank you for attention！

