

# Deformed black hole in Sagittarius A

QUARKS June 10<sup>th</sup> 2021

**Timothy Anson** 

Laboratoire de Physique des 2 Infinis, Orsay

based on:

2006.06461, TA, E. Babichev, C. Charmousis, M. Hassaine, JHEP01(2021)018 2103.05490, TA, E. Babichev, C. Charmousis, (accepted in PRD)

- The Kerr solution describes rotating black holes in general relativity (GR)
- It is interesting to construct deformations of the Kerr spacetime, in order to test general relativity and potentially find signatures of modified theories of gravity
- Usually, *ad hoc* deformations of the Kerr spacetime are constructed [Psaltis+, 2011; Johannsen, 2013; Papadopoulos+, 2018; ...]
- Using the disformal map, one can construct deformed versions of the Kerr spacetime which are solutions to higher-order scalar-tensor theories
- We study the post-Newtonian motion of stars around a deformed Kerr black hole and discuss current and future experiments in this context

1. Disforming the Kerr metric

2. Stars orbiting Sgr A\*

1. Disforming the Kerr metric

#### Kerr solution

- Vacuum solution of GR describing a rotating black hole [Kerr, 1963]. The metric g verifies  $R_{\mu\nu} = 0$ .
- In Boyer-Lindquist coordinates, the metric tensor is:

$$ds_{\mathsf{K}}^{2} = -\left(1 - \frac{2Mr}{\rho^{2}}\right)dt^{2} - \frac{4aMr\sin^{2}\theta}{\rho^{2}}dtd\varphi + \frac{\sin^{2}\theta}{\rho^{2}}\left[(r^{2} + a^{2})^{2} - a^{2}\Delta\sin^{2}\theta\right]d\varphi^{2} + \frac{\rho^{2}}{\Delta}dr^{2} + \rho^{2}d\theta^{2}$$

where M is the mass, a is the angular momentum per unit mass, and

$$\rho^2 = r^2 + a^2 \cos^2 \theta ,$$
  
$$\Delta = r^2 + a^2 - 2Mr .$$

•  $R_{\mu\nu\alpha\sigma}R^{\mu\nu\alpha\sigma}$  is singular at  $\rho = \sqrt{r^2 + a^2 \cos^2 \theta} = 0$ , so there is a ring singularity at

$$r=0$$
 and  $heta=rac{\pi}{2}$ 

# Disforming the Kerr metric

• We start from the Kerr solution  $g^{K}$ , and perform the disformal transformation

$$egin{aligned} & ilde{g}_{\mu
u} = g^{\mathsf{K}}_{\mu
u} - rac{D}{q^2} \, \partial_\mu \phi \, \partial_
u \phi \; , \ \phi = q_0 \left[ t + \int rac{\sqrt{2 M r (a^2 + r^2)}}{\Delta} \mathrm{d}r 
ight] \; . \end{aligned}$$

- When D = 0, stealth-Kerr solution in degenerate higher-order scalar-tensor theories (DHOST) [Charmousis+, 2019]
- The scalar field defines a timelike geodesic direction for the Kerr metric, since we have

$$g^{\mathsf{K}}_{\mu\nu}\partial^{\mu}\phi\partial^{\nu}\phi = -q_{0}^{2} \qquad \Rightarrow \qquad \partial^{\mu}\phi\nabla_{\mu}\nabla_{\nu}\phi = 0$$

 Because the DHOST la class is stable under the disformal map [Zumalacárregui+; Bettoni+, 2015; ...], we obtain another DHOST solution depending on the constants {D, q} [Achour+, 2020]

# **Disformed Kerr metrics**

The line element becomes

$$d\tilde{s}^{2} = -\left(1 - \frac{2\tilde{M}r}{\rho^{2}}\right)dt^{2} - 2D\frac{\sqrt{2\tilde{M}r(a^{2} + r^{2})}}{\Delta}dtdr + \frac{\rho^{2}\Delta - 2\tilde{M}rD(1+D)(a^{2} + r^{2})}{\Delta^{2}}dr^{2}$$
$$-\frac{4\sqrt{1+D\tilde{M}ar\sin^{2}\theta}}{\rho^{2}}dtd\varphi + \frac{\sin^{2}\theta}{\rho^{2}}\left[\left(r^{2} + a^{2}\right)^{2} - a^{2}\Delta\sin^{2}\theta\right]d\varphi^{2} + \rho^{2}d\theta^{2}$$

with  $ilde{M} = M/(1+D)$  and the rescaling  $t o \sqrt{1+D}t$ 

The scalar again defines a geodesic direction, since

$$ilde{g}^{\mu
u}\partial_{\mu}\phi\partial_{
u}\phi=-rac{q_{0}^{2}}{1+D}$$

• If a = 0, there exists a diffeomorphism  $dt \rightarrow dT + f(r)dr$  that brings the metric to the form [Babichev+, 2017; Achour+, 2019]

$$\mathrm{d}\tilde{s}^{2} = -\left(1 - \frac{2\tilde{M}}{r}\right)\mathrm{d}T^{2} + \left(1 - \frac{2\tilde{M}}{r}\right)^{-1}\mathrm{d}r^{2} + r^{2}\mathrm{d}\Omega^{2}$$

The disformed metric has the following curvature scalars

$$ilde{R} = -rac{Da^2 Mr [1+3\cos(2 heta)]}{(1+D)
ho^6}, \quad ilde{R}_{\mu
ulphaeta} \, ilde{R}^{\mu
ulphaeta} = rac{M^2 Q_2(r, heta)}{
ho^{12} (r^2+a^2)(1+D)^2} \; ,$$

 The solution is not Ricci-flat, but the only singularity is at ρ = 0, like Kerr. To verify this, one changes coordinates to

$$t 
ightarrow v - r - \int rac{2Mr}{\Delta} \mathrm{d}r \,, \qquad arphi 
ightarrow - \Phi - a \int rac{\mathrm{d}r}{\Delta}$$

The metric components are regular in these coordinates, and the scalar field reads

$$\phi = q_0 \left( v - r + \int rac{\mathrm{d}r}{1 + \sqrt{rac{r^2 + a^2}{2Mr}}} 
ight)$$

• The scalar acts as a global time function (stable causality)

#### Noncircularity in the general case

- We still have the two commuting Killing vectors  $\partial_t$  and  $\partial_{\varphi}$  associated to axisymmetry
- However, defining  $\xi_{(t)} = \tilde{g}_{t\mu} dx^{\mu}$  and  $\xi_{(\varphi)} = \tilde{g}_{\varphi\mu} dx^{\mu}$ , we now have

$$\xi_{(t)} \wedge \xi_{(\varphi)} \wedge d\xi_{(t)} = -D \frac{4a^2 \tilde{M}r \sqrt{2\tilde{M}r(a^2 + r^2)} \cos\theta \sin^3\theta}{\rho^4} dt \wedge dr \wedge d\theta \wedge d\varphi$$

- This means we cannot write the metric in a form that is invariant under the reflection (t, φ) → (−t, −φ)
- It also has an impact on the separability structure of the spacetime, and we no longer have a nontrivial Killing tensor [Benenti+, 1979,1980]
- The geodesic equations should be integrated numerically, and the shadows of disformed Kerr spacetimes have been studied [Long+, 2020]

- Similarly to Kerr, there is a limiting surface for static observers, or ergosphere, defined by  $\tilde{g}_{tt} = 0$
- The limiting surface for stationary observers is obtained by solving the equation

$$\tilde{g}_{tt}\tilde{g}_{\varphi\varphi}-\tilde{g}_{t\varphi}^2=0$$

- It is a timelike hypersurface, and hence it cannot correspond to an event horizon
- Instead, the horizon surface  $r = R(\theta)$  is null and R must verify

$$R'( heta)^2+R^2+a^2-2 ilde{M}R+rac{2 ilde{M}Da^2R\sin^2 heta}{
ho^2(R, heta)}=0$$

What happens between the stationary limit and horizon surfaces ?

# Asymptotically similar to Kerr

• Asymptotically, the Kerr metric with parameters  $\{\tilde{M}, \tilde{a}\}$  can be written

$$\begin{split} \mathrm{d}s_{\mathrm{Kerr}}^2 &= -\left[1 - \frac{2\tilde{M}}{r} + \mathcal{O}\left(\frac{1}{r^3}\right)\right] \mathrm{d}T^2 - \left[\frac{4\tilde{a}\tilde{M}}{r^3} + \mathcal{O}\left(\frac{1}{r^5}\right)\right] \left[x\mathrm{d}y - y\mathrm{d}x\right] \mathrm{d}T \\ &+ \left[1 + \mathcal{O}\left(\frac{1}{r}\right)\right] \left[\mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2\right] \end{split}$$

After a coordinate transformation, one can write the disformal metric as

$$\mathrm{d}\tilde{s}^{2} = \mathrm{d}s_{\mathrm{Kerr}}^{2} + \frac{D}{1+D} \left[ \mathcal{O}\left(\frac{\tilde{a}^{2}\tilde{M}}{r^{3}}\right) \mathrm{d}T^{2} + \mathcal{O}\left(\frac{\tilde{a}^{2}\tilde{M}^{3/2}}{r^{7/2}}\right) \alpha_{i} \mathrm{d}T \mathrm{d}x^{i} + \mathcal{O}\left(\frac{\tilde{a}^{2}}{r^{2}}\right) \beta_{ij} \mathrm{d}x^{i} \mathrm{d}x^{j} \right]$$

with  $\alpha_i, \beta_{ij} \sim \mathcal{O}(1)$ .

• The physical parameters determined from the asymptotic expansion are

$$ilde{M} = rac{M}{1+D} \ , \qquad ilde{a} = a\sqrt{1+D}$$

#### Limit $D \rightarrow \infty$ : noncircular Schwarzschild metric

• In the limit  $D \to \infty$ , one can obtain a simpler line element. After a coordinate transformation, it reads with  $\tilde{\chi} = \tilde{a}/\tilde{M}$ 

$$\begin{split} \mathrm{d}\tilde{s}_{\mathrm{NCS}}^{2} &= -\left(1 - \frac{2\tilde{M}}{r}\right) \left(\mathrm{d}\,T + \frac{2\tilde{\chi}\tilde{M}^{2}\sin^{2}\theta}{r - 2\tilde{M}}\mathrm{d}\varphi\right)^{2} \\ &+ \left(1 - \frac{2\tilde{M}}{r}\right)^{-1} \left(\mathrm{d}\,r - \sqrt{\frac{2\tilde{M}^{3}}{r}}\tilde{\chi}\sin^{2}\theta\mathrm{d}\varphi\right)^{2} + r^{2}\left(\mathrm{d}\theta^{2} + \sin^{2}\theta\mathrm{d}\varphi^{2}\right) \end{split}$$

• After the field redefinition  $\psi = \sqrt{1+D}\phi/q_0$ , the scalar reads

$$\psi = T + 2\sqrt{2\tilde{M}r} - 4 \tanh^{-1} \sqrt{\frac{r}{2\tilde{M}}}$$

 The metric and scalar can be shown to be solutions to a particular class of DHOST theories

#### Limit $D \rightarrow -1$ : quasi-Weyl metric

• In the limit  $D \rightarrow -1$ , we have

$$d\tilde{s}_{QW}^2 = -\left(1 - \frac{2\tilde{M}r}{\rho^2}\right)dt^2 + \frac{\rho^2}{r^2 + a^2}dr^2 + 2\sqrt{\frac{2\tilde{M}r}{r^2 + a^2}}dtdr + \rho^2d\theta^2 + \left(r^2 + a^2\right)\sin^2\theta d\varphi^2$$

• It is a priori a singular limit, since after the redefinition  $t \to t/\sqrt{1+D}$  we have

$$\phi = \frac{q_0}{\sqrt{1+D}} \left[ t + (1+D) \int \frac{\sqrt{2\tilde{M}r(a^2+r^2)}}{\Delta} dr \right]$$

- After the field redefinition  $\psi = \sqrt{1+D}\phi/q_0$ , the scalar is simply  $\psi = t$
- Again, one can isolate the corresponding DHOST theories
- These 2 simpler examples could be useful in understanding the properties of noncircular spacetimes

# 2. Stars orbiting Sgr A\*

#### Orbit of stars around Sgr A\*



- The pericenter precession (Δω) for the star S2 around Sagittarius A\* has been measured [GRAVITY, 2020]
- In the future, smaller effects (ΔΩ, Δι) will be probed (for instance with stars with high eccentricities and shorter orbital periods [Will, 2007])
- This will provide a measurement of *J* and *Q*, the spin and quadrupole moment of the black hole, providing a test of the no-hair theorem in GR:

$$Q = -Ma^2$$

- We study the post-Newtonian (PN) motion of stars around a deformed Kerr black hole, using coordinates that are harmonic for the Kerr metric  $\Box x^{\mu} = 0$
- We write the Gauss planetary equations up to 2PN order, and use a two-timescale analysis closely following [Will+, 2016]. A second variable Θ = εu is introduced, with u = ω + f. The evolution of orbital parameters X<sub>k</sub> can be written

$$\frac{\mathrm{d}X_k}{\mathrm{d}u} = \epsilon Q_k \left( X_l(u), u \right) \; ,$$

Each parameter is decomposed according to

$$X_k(\Theta, u) = ar{X}_k(\Theta) + \epsilon Z_k(ar{X}_l, u) \;, \qquad ar{X}_k(\Theta) = \langle X_k(\Theta, u) 
angle \;, \qquad \langle Z_k 
angle = 0 \;.$$

• From this we obtain, with  $Q_k^0 = Q_k(\bar{X}_l, u)$ 

$$\frac{\mathrm{d}\bar{X}_{k}}{\mathrm{d}u} = \epsilon \langle Q_{k}^{0} \rangle + \epsilon^{2} \left[ \langle Q_{k,l}^{0} \int_{0}^{u} Q_{l}^{0} \mathrm{d}u' \rangle + \langle Q_{k,l}^{0} \rangle \langle u Q_{l}^{0} \rangle - \langle (u+\pi) Q_{k,l}^{0} \rangle \langle Q_{l}^{0} \rangle \right] + \mathcal{O}\left(\epsilon^{3}\right)$$

# Application to the disformed metrics

• For the disformed Kerr metrics in the generic case, we obtain the following expressions at 2PN order, with  $\alpha = e \cos \omega$  and  $\beta = e \sin \omega$ 

$$\begin{split} \frac{\mathrm{d}\bar{p}}{\mathrm{d}u} &= 0 \;, \\ \frac{\mathrm{d}\bar{\alpha}}{\mathrm{d}u} &= -\frac{3\tilde{M}\bar{\beta}}{\bar{p}} + 6\tilde{\chi}\bar{\beta}\cos\bar{\iota}\left(\frac{\tilde{M}}{\bar{p}}\right)^{3/2} + \frac{3\tilde{M}^2\bar{\beta}}{4\bar{p}^2}\left(10 - \bar{\alpha}^2 - \bar{\beta}^2\right) - \frac{3\tilde{M}^2\bar{\beta}\tilde{\chi}^2(5\cos^2\bar{\iota} - 1)}{4\bar{p}^2(1 + D)} \;, \\ \frac{\mathrm{d}\bar{\beta}}{\mathrm{d}u} &= \frac{3\tilde{M}\bar{\alpha}}{\bar{p}} - 6\tilde{\chi}\bar{\alpha}\cos\bar{\iota}\left(\frac{\tilde{M}}{\bar{p}}\right)^{3/2} - \frac{3\tilde{M}^2\bar{\alpha}}{4\bar{p}^2}\left(10 - \bar{\alpha}^2 - \bar{\beta}^2\right) + \frac{3\tilde{M}^2\bar{\alpha}\tilde{\chi}^2(5\cos^2\bar{\iota} - 1)}{4\bar{p}^2(1 + D)} \;, \\ \frac{\mathrm{d}\bar{\iota}}{\mathrm{d}u} &= 0 \;, \\ \frac{\mathrm{d}\bar{\Omega}}{\mathrm{d}u} &= 2\tilde{\chi}\left(\frac{\tilde{M}}{\bar{p}}\right)^{3/2} - \frac{3\tilde{M}^2\tilde{\chi}^2\cos\bar{\iota}}{2\bar{p}^2(1 + D)} \;. \end{split}$$

The dimensionless quadrupole in the disformal case reads

$$q^{(D)} = -\frac{\tilde{\chi}^2}{1+D}$$

# Limit $D \rightarrow \infty$ : noncircular Schwarzschild metric

• In this limit, the quadrupole term disappears and we have

$$\begin{split} \frac{\mathrm{d}\bar{p}}{\mathrm{d}u} &= 0 \ , \\ \frac{\mathrm{d}\bar{\alpha}}{\mathrm{d}u} &= -\frac{3\tilde{M}\bar{\beta}}{\bar{p}} + 6\tilde{\chi}\bar{\beta}\cos\bar{\iota}\left(\frac{\tilde{M}}{\bar{p}}\right)^{3/2} + \frac{3\tilde{M}^2\bar{\beta}}{4\bar{p}^2}\left(10 - \bar{\alpha}^2 - \bar{\beta}^2\right) + \mathbf{0} \ , \\ \frac{\mathrm{d}\bar{\beta}}{\mathrm{d}u} &= \frac{3\tilde{M}\bar{\alpha}}{\bar{p}} - 6\tilde{\chi}\bar{\alpha}\cos\bar{\iota}\left(\frac{\tilde{M}}{\bar{p}}\right)^{3/2} - \frac{3\tilde{M}^2\bar{\alpha}}{4\bar{p}^2}\left(10 - \bar{\alpha}^2 - \bar{\beta}^2\right) + \mathbf{0} \ , \\ \frac{\mathrm{d}\bar{\iota}}{\mathrm{d}u} &= 0 \ , \\ \frac{\mathrm{d}\bar{\Omega}}{\mathrm{d}u} &= 2\tilde{\chi}\left(\frac{\tilde{M}}{\bar{p}}\right)^{3/2} + \mathbf{0} \ . \end{split}$$

- We have the Schwarzschild predictions and frame-dragging, but no quadrupole so the no-hair theorem is violated
- Even though the metric is noncircular at this order, it has no influence on the secular variation of parameters

#### Limit $D \rightarrow -1$ : quasi-Weyl metric

• In this limit, one cannot use the physical parameter  $\tilde{\chi} = \tilde{a}/\tilde{M}$ , since there is a divergence when  $D \rightarrow -1$ . Instead, we use the parameter  $\chi = a/\tilde{M}$ , and in this case

$$\begin{split} \frac{\mathrm{d}\bar{p}}{\mathrm{d}u} &= 0 \ , \\ \frac{\mathrm{d}\bar{\alpha}}{\mathrm{d}u} &= -\frac{3\tilde{M}\bar{\beta}}{\bar{p}} + \frac{3\tilde{M}^2\bar{\beta}}{4\bar{p}^2} \left(10 - \bar{\alpha}^2 - \bar{\beta}^2\right) - \frac{3\tilde{M}^2\bar{\beta}\chi^2}{4\bar{p}^2} \left(5\cos^2\bar{\iota} - 1\right) \ , \\ \frac{\mathrm{d}\bar{\beta}}{\mathrm{d}u} &= \frac{3\tilde{M}\bar{\alpha}}{\bar{p}} - \frac{3\tilde{M}^2\bar{\alpha}}{4\bar{p}^2} \left(10 - \bar{\alpha}^2 - \bar{\beta}^2\right) + \frac{3\tilde{M}^2\bar{\alpha}\chi^2}{4\bar{p}^2} \left(5\cos^2\bar{\iota} - 1\right) \ , \\ \frac{\mathrm{d}\bar{\iota}}{\mathrm{d}u} &= 0 \ , \\ \frac{\mathrm{d}\bar{\Omega}}{\mathrm{d}u} &= -\frac{3\tilde{M}^2\chi^2\cos\bar{\iota}}{2\bar{p}^2} \ . \end{split}$$

 The no-hair theorem is again violated, since in this case there is a free parameter a entering the quadrupole term. In this case χ̃ = 0.

# $D+1\sim \varepsilon$ : enhanced Kerr disformation

- We now try to maximize the effects of disformality. From the asymptotic expansion of the disformed metric, this seems to happen when  $1 + D \ll 1$
- We define ε = *M*/A, where A is the semimajor axis, and assume that the constant disformal parameter is given by

$$D=-1+rac{ ilde{\chi}^2}{\lambda}arepsilon \ , \qquad \{\lambda, ilde{\chi}\}\sim \mathcal{O}\left(1
ight)$$

• We expect 1PN terms to be modified in this case, and indeed we obtain

$$\Delta \bar{\varpi} \equiv \Delta \bar{\omega} + \cos \bar{\iota} \, \Delta \bar{\Omega} = \frac{6\pi \tilde{M}}{\bar{p}} \left[ 1 + \frac{\lambda}{4(1 - \bar{e}^2)} \left( 3\cos^2 \bar{\iota} - 1 \right) \right] + \mathcal{O}\left( \varepsilon^{3/2} \right)$$

#### Comparison to experiments

• Using the previous expression for the orbit of S2 around Sgr A\*, with  $\varepsilon_0 = \tilde{M}/A_0$ , the GRAVITY constraint implies

$$\left|rac{\lambda\left(3\cos^2ar{\iota}-1
ight)}{4(1-ar{e}^2)}
ight|\lesssim 0.2$$

• If we replace the eccentricity of S2 and assume  $|3\cos^2 \overline{\iota} - 1| \sim 1$ , the inequality is saturated for  $\lambda_0 \sim 0.2$ . To maximize the effects of disformality, we take

$$D_0 = -1 + rac{ ilde{\chi}^2arepsilon_0}{\lambda_0}$$

• For another star with  $\varepsilon \neq \varepsilon_0$ , we have

$$\Delta ar{arpi} = rac{6\pi ilde{M}}{ar{p}} \left[ 1 + rac{arepsilon \lambda_0}{arepsilon_0} rac{(3\cos^2 ar{\iota} - 1)}{4(1 - ar{e}^2)} 
ight].$$

- This is valid for  $\varepsilon^2 \lesssim 10^{-3} \lesssim \sqrt{\varepsilon}$ 

# Conclusion

- Studying alternatives to the Kerr spacetime allows to test GR
- We have constructed solutions to DHOST theories by performing a disformal transformation of the Kerr spacetime using a geodesic scalar
- While asymptotically very similar to Kerr, the solution presents many interesting properties: noncircularity, horizon not located at constant r and not a Killing horizon, the stationary limit is distinct from the event horizon
- In two particular limits, simpler metrics were obtained, and they could be useful in studying the properties of noncircular spacetimes
- We have calculated the secular variation of orbital parameters for stars around a deformed black hole, and shown that the no-hair theorem of GR is violated in general for these spacetimes
- In the particular limit of D ~ 1 + e, we derived the maximal deformation compatible with current observations, and used it to predict the pericenter precession for other stars, which may be measured in the future

# Thank you for your attention.

• After the coordinate change

$$t 
ightarrow v - r - \int rac{2Mr}{\Delta} \mathrm{d}r \,, \qquad arphi 
ightarrow - \Phi - a \int rac{\mathrm{d}r}{\Delta} \,,$$

the disformed Kerr metric reads

$$\begin{split} \mathrm{d}\vec{s}^{2} &= -\left(1+D-\frac{2Mr}{\rho^{2}}\right)\mathrm{d}v^{2}+2\left(1+D-\frac{D}{1+\sqrt{\frac{p^{2}+s^{2}}{2Mr}}}\right)\mathrm{d}v\mathrm{d}r\\ &\quad -D\left(1-\frac{1}{1+\sqrt{\frac{s^{2}+r^{2}}{2Mr}}}\right)^{2}\mathrm{d}r^{2}\\ &\quad +\frac{4aMr\sin^{2}\theta}{\rho^{2}}\mathrm{d}v\mathrm{d}\Phi+2a\sin^{2}\theta\mathrm{d}r\mathrm{d}\Phi+\rho^{2}\mathrm{d}\theta^{2}\\ &\quad +\frac{\sin^{2}\theta\left(2a^{4}\cos^{2}\theta+4a^{2}Mr\sin^{2}\theta+a^{2}r^{2}\left[3+2\cos(2\theta)\right]+2r^{4}\right)}{2\rho^{2}}\mathrm{d}\Phi^{2}\;. \end{split}$$

### Stability of the DHOST class under the disformal map



 The la subclass can be obtained from Horndeski theories by a disformal transformation of the metric [Ben Achour+; Crisostomi+, 2016; ...]:

$$ilde{g}_{\mu
u} = {\it C}(\phi, {\it X}) {\it g}_{\mu
u} + {\it D}(\phi, {\it X}) \partial_\mu \phi \partial_
u \phi$$

• The theories are different because of the matter coupling:

$$\tilde{S}[\tilde{g}_{\mu\nu},\phi] + S_{\mathrm{m}}[\tilde{g}_{\mu\nu},\Psi_{\mathrm{m}}] \xrightarrow{\mathsf{DISFORMAL}} S[g_{\mu\nu},\phi] + S_{\mathrm{m}}[g_{\mu\nu},\Psi_{\mathrm{m}}]$$

# Stably causal spacetime

 There can exist closed timelike curves in a spacetime, even in GR (Kerr with a > M for example). We want to avoid such pathologies.



[Wald's book]

**Theorem:** A spacetime  $(M_0, g_{\mu\nu})$  is stably causal if and only if there exists a differentiable function f on  $M_0$  such that  $\nabla^{\mu} f$  is a future (past) directed timelike vector field

- We have such a function by construction, the scalar field φ itself. It serves as a global time.
- The spacetime is globally causal if the region r > 0 is causally disconnected from the region r < 0 (where CTCs are present even for Kerr)</li>
- Some of the *ad hoc* deformations of Kerr proposed in the past contain such pathologies [Johannsen, 2013]