
Deformed black hole in Sagittarius A
QUARKS
June 10th 2021

Timothy Anson
Laboratoire de Physique des 2 Infinis, Orsay

based on:
2006.06461, TA, E. Babichev, C. Charmousis, M. Hassaine, JHEP01(2021)018
2103.05490, TA, E. Babichev, C. Charmousis, (accepted in PRD)

1



Introduction

• The Kerr solution describes rotating black holes in general relativity (GR)
• It is interesting to construct deformations of the Kerr spacetime, in order

to test general relativity and potentially find signatures of modified
theories of gravity

• Usually, ad hoc deformations of the Kerr spacetime are constructed
[Psaltis+, 2011; Johannsen, 2013; Papadopoulos+, 2018; ...]

• Using the disformal map, one can construct deformed versions of the Kerr
spacetime which are solutions to higher-order scalar-tensor theories

• We study the post-Newtonian motion of stars around a deformed Kerr
black hole and discuss current and future experiments in this context

2



Table of contents

1. Disforming the Kerr metric

2. Stars orbiting Sgr A*

3



1. Disforming the Kerr metric



Kerr solution

• Vacuum solution of GR describing a rotating black hole [Kerr, 1963]. The
metric g verifies Rµν = 0.

• In Boyer-Lindquist coordinates, the metric tensor is:

ds2
K = −

(
1 −

2Mr
ρ2

)
dt2 −

4aMr sin2 θ

ρ2 dtdφ+
sin2 θ

ρ2

[
(r2 + a2)2 − a2∆sin2 θ

]
dφ2

+
ρ2

∆
dr2 + ρ2dθ2

where M is the mass, a is the angular momentum per unit mass, and

ρ2 = r2 + a2 cos2 θ ,

∆ = r2 + a2 − 2Mr .

• RµνασRµνασ is singular at ρ =
√

r2 + a2 cos2 θ = 0, so there is a ring
singularity at

r = 0 and θ =
π
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Disforming the Kerr metric

• We start from the Kerr solution gK, and perform the disformal
transformation

g̃µν = gK
µν − D

q2 ∂µϕ∂νϕ ,

ϕ = q0

[
t +

∫ √
2Mr(a2 + r2)

∆
dr
]
.

• When D = 0, stealth-Kerr solution in degenerate higher-order scalar-tensor
theories (DHOST) [Charmousis+, 2019]

• The scalar field defines a timelike geodesic direction for the Kerr metric,
since we have

gK
µν∂

µϕ∂νϕ = −q2
0 ⇒ ∂µϕ∇µ∇νϕ = 0

• Because the DHOST Ia class is stable under the disformal map
[Zumalacárregui+; Bettoni+, 2015; ...], we obtain another DHOST solution
depending on the constants {D, q} [Achour+, 2020]
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Disformed Kerr metrics

• The line element becomes

ds̃2 = −
(

1 −
2M̃r
ρ2

)
dt2−2D

√
2M̃r(a2 + r2)

∆
dtdr + ρ2∆− 2M̃rD(1 + D)(a2 + r2)

∆2 dr2

−
4
√

1 + DM̃ar sin2 θ

ρ2 dtdφ+
sin2 θ

ρ2

[(
r2 + a2

)2
− a2∆sin2 θ

]
dφ2 + ρ2dθ2

with M̃ = M/(1+ D) and the rescaling t →
√
1+ Dt

• The scalar again defines a geodesic direction, since

g̃µν∂µϕ∂νϕ = − q2
0

1+ D
• If a = 0, there exists a diffeomorphism dt → dT + f(r)dr that brings the

metric to the form [Babichev+, 2017; Achour+, 2019]

ds̃2 = −
(
1− 2M̃

r

)
dT2 +

(
1− 2M̃

r

)−1

dr2 + r2dΩ2
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Regular solutions

• The disformed metric has the following curvature scalars

R̃ = −Da2Mr[1+ 3 cos(2θ)]
(1+ D)ρ6 , R̃µναβR̃µναβ =

M2Q2(r, θ)
ρ12(r2 + a2)(1+ D)2 ,

• The solution is not Ricci-flat, but the only singularity is at ρ = 0, like Kerr.
To verify this, one changes coordinates to

t → v − r −
∫ 2Mr

∆
dr , φ→ −Φ− a

∫ dr
∆

• The metric components are regular in these coordinates, and the scalar
field reads

ϕ = q0

v − r +
∫ dr

1+
√

r2+a2
2Mr


• The scalar acts as a global time function (stable causality)
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Noncircularity in the general case

• We still have the two commuting Killing vectors ∂t and ∂φ associated to
axisymmetry

• However, defining ξ(t) = g̃tµdxµ and ξ(φ) = g̃φµdxµ, we now have

ξ(t) ∧ ξ(φ) ∧ dξ(t) = −D
4a2M̃r

√
2M̃r(a2 + r2) cos θ sin3 θ

ρ4 dt ∧ dr ∧ dθ ∧ dφ

• This means we cannot write the metric in a form that is invariant under
the reflection (t, φ) → (−t,−φ)

• It also has an impact on the separability structure of the spacetime, and
we no longer have a nontrivial Killing tensor [Benenti+, 1979,1980]

• The geodesic equations should be integrated numerically, and the shadows
of disformed Kerr spacetimes have been studied [Long+, 2020]
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Important hypersurfaces in the disformed spacetimes

• Similarly to Kerr, there is a limiting surface for static observers, or
ergosphere, defined by g̃tt = 0

• The limiting surface for stationary observers is obtained by solving the
equation

g̃ttg̃φφ − g̃2
tφ = 0

• It is a timelike hypersurface, and hence it cannot correspond to an event
horizon

• Instead, the horizon surface r = R(θ) is null and R must verify

R′(θ)2 + R2 + a2 − 2M̃R +
2M̃Da2R sin2 θ

ρ2(R, θ) = 0

• What happens between the stationary limit and horizon surfaces ?
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Asymptotically similar to Kerr

• Asymptotically, the Kerr metric with parameters {M̃, ã} can be written

ds2
Kerr = −

[
1− 2M̃

r +O
(
1
r3

)]
dT2 −

[
4ãM̃

r3 +O
(
1
r5

)]
[xdy − ydx] dT

+

[
1+O

(
1
r

)] [
dx2 + dy2 + dz2

]
• After a coordinate transformation, one can write the disformal metric as

ds̃2 = ds2
Kerr +

D
1 + D

[
O
(

ã2M̃
r3

)
dT2 +O

(
ã2M̃3/2

r7/2

)
αidTdxi +O

( ã2

r2

)
βijdxidxj

]

with αi, βij ∼ O(1).

• The physical parameters determined from the asymptotic expansion are

M̃ =
M

1+ D , ã = a
√
1+ D
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Limit D → ∞: noncircular Schwarzschild metric

• In the limit D → ∞, one can obtain a simpler line element. After a
coordinate transformation, it reads with χ̃ = ã/M̃

ds̃2
NCS = −

(
1− 2M̃

r

)(
dT +

2χ̃M̃2 sin2 θ

r − 2M̃
dφ

)2

+

(
1− 2M̃

r

)−1
dr −

√
2M̃3

r χ̃ sin2 θdφ

2

+ r2
(
dθ2 + sin2 θdφ2

)

• After the field redefinition ψ =
√
1+ Dϕ/q0, the scalar reads

ψ = T + 2
√
2M̃r − 4 tanh−1

√
r

2M̃
.

• The metric and scalar can be shown to be solutions to a particular class of
DHOST theories
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Limit D → −1: quasi-Weyl metric

• In the limit D → −1, we have

ds̃2
QW = −

(
1− 2M̃r

ρ2

)
dt2 +

ρ2

r2 + a2 dr2

+ 2

√
2M̃r

r2 + a2 dtdr + ρ2dθ2 +
(

r2 + a2
)
sin2 θdφ2

• It is a priori a singular limit, since after the redefinition t → t/
√
1+ D we

have

ϕ =
q0√
1+ D

t + (1+ D)

∫ √
2M̃r(a2 + r2)

∆
dr

 .

• After the field redefinition ψ =
√
1+ Dϕ/q0, the scalar is simply ψ = t

• Again, one can isolate the corresponding DHOST theories
• These 2 simpler examples could be useful in understanding the properties

of noncircular spacetimes
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2. Stars orbiting Sgr A*



Orbit of stars around Sgr A*

• The pericenter precession (∆ω) for the star S2 around Sagittarius A* has
been measured [GRAVITY, 2020]

• In the future, smaller effects (∆Ω,∆ι) will be probed (for instance with
stars with high eccentricities and shorter orbital periods [Will, 2007])

• This will provide a measurement of J and Q, the spin and quadrupole
moment of the black hole, providing a test of the no-hair theorem in GR:

Q = −Ma2
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Secular variation of orbital elements

• We study the post-Newtonian (PN) motion of stars around a deformed
Kerr black hole, using coordinates that are harmonic for the Kerr metric
□xµ = 0

• We write the Gauss planetary equations up to 2PN order, and use a
two-timescale analysis closely following [Will+, 2016]. A second variable
Θ = ϵu is introduced, with u = ω + f. The evolution of orbital parameters
Xk can be written

dXk
du = ϵQk (Xl(u), u) ,

• Each parameter is decomposed according to

Xk(Θ, u) = X̄k(Θ) + ϵZk(X̄l, u) , X̄k(Θ) = ⟨Xk(Θ, u)⟩ , ⟨Zk⟩ = 0 .

• From this we obtain, with Q0
k = Qk(X̄l, u)

dX̄k
du = ϵ⟨Q0

k⟩+ ϵ2
[
⟨Q0

k,l

∫ u

0
Q0

l du′⟩+ ⟨Q0
k,l⟩⟨uQ0

l ⟩ − ⟨(u + π)Q0
k,l⟩⟨Q0

l ⟩
]
+O

(
ϵ3
)
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Application to the disformed metrics

• For the disformed Kerr metrics in the generic case, we obtain the following
expressions at 2PN order, with α = e cosω and β = e sinω

dp̄
du

= 0 ,

dᾱ
du

= −
3M̃β̄

p̄
+ 6χ̃β̄ cos ῑ

(
M̃
p̄

)3/2

+
3M̃2β̄

4p̄2

(
10 − ᾱ2 − β̄2

)
−

3M̃2β̄χ̃2(5 cos2 ῑ− 1)
4p̄2(1 + D)

,

dβ̄
du

=
3M̃ᾱ

p̄
− 6χ̃ᾱ cos ῑ

(
M̃
p̄

)3/2

−
3M̃2ᾱ

4p̄2

(
10 − ᾱ2 − β̄2

)
+

3M̃2ᾱχ̃2(5 cos2 ῑ− 1)
4p̄2(1 + D)

,

dῑ
du

= 0 ,

dΩ̄
du

= 2χ̃
(

M̃
p̄

)3/2

−
3M̃2χ̃2 cos ῑ

2p̄2(1 + D)
.

• The dimensionless quadrupole in the disformal case reads

q(D) = −
χ̃2

1 + D
15



Limit D → ∞: noncircular Schwarzschild metric

• In this limit, the quadrupole term disappears and we have

dp̄
du = 0 ,

dᾱ
du = −3M̃β̄

p̄ + 6χ̃β̄ cos ῑ

(
M̃
p̄

)3/2

+
3M̃2β̄

4p̄2

(
10− ᾱ2 − β̄2

)
+ 0 ,

dβ̄
du =

3M̃ᾱ
p̄ − 6χ̃ᾱ cos ῑ

(
M̃
p̄

)3/2

− 3M̃2ᾱ

4p̄2

(
10− ᾱ2 − β̄2

)
+ 0 ,

dῑ
du = 0 ,

dΩ̄
du = 2χ̃

(
M̃
p̄

)3/2

+ 0 .

• We have the Schwarzschild predictions and frame-dragging, but no
quadrupole so the no-hair theorem is violated

• Even though the metric is noncircular at this order, it has no influence on
the secular variation of parameters
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Limit D → −1: quasi-Weyl metric

• In this limit, one cannot use the physical parameter χ̃ = ã/M̃, since there
is a divergence when D → −1. Instead, we use the parameter χ = a/M̃,
and in this case

dp̄
du = 0 ,

dᾱ
du = −3M̃β̄

p̄ +
3M̃2β̄

4p̄2

(
10− ᾱ2 − β̄2

)
− 3M̃2β̄χ2

4p̄2

(
5 cos2 ῑ− 1

)
,

dβ̄
du =

3M̃ᾱ
p̄ − 3M̃2ᾱ

4p̄2

(
10− ᾱ2 − β̄2

)
+

3M̃2ᾱχ2

4p̄2

(
5 cos2 ῑ− 1

)
,

dῑ
du = 0 ,

dΩ̄
du = −3M̃2χ2 cos ῑ

2p̄2 .

• The no-hair theorem is again violated, since in this case there is a free
parameter a entering the quadrupole term. In this case χ̃ = 0.
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D + 1 ∼ ε: enhanced Kerr disformation

• We now try to maximize the effects of disformality. From the asymptotic
expansion of the disformed metric, this seems to happen when 1+ D ≪ 1

• We define ε = M̃/A, where A is the semimajor axis, and assume that the
constant disformal parameter is given by

D = −1+ χ̃2

λ
ε , {λ, χ̃} ∼ O (1)

• We expect 1PN terms to be modified in this case, and indeed we obtain

∆ϖ̄ ≡ ∆ω̄ + cos ῑ∆Ω̄ =
6πM̃

p̄

[
1+ λ

4(1− ē2)

(
3 cos2 ῑ− 1

)]
+O

(
ε3/2

)
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Comparison to experiments

• Using the previous expression for the orbit of S2 around Sgr A*, with
ε0 = M̃/A0, the GRAVITY constraint implies∣∣∣∣∣λ

(
3 cos2 ῑ− 1

)
4(1− ē2)

∣∣∣∣∣ ≲ 0.2

• If we replace the eccentricity of S2 and assume |3 cos2 ῑ− 1| ∼ 1, the
inequality is saturated for λ0 ∼ 0.2. To maximize the effects of
disformality, we take

D0 = −1+ χ̃2ε0
λ0

• For another star with ε ̸= ε0, we have

∆ϖ̄ =
6πM̃

p̄

[
1+ ελ0

ε0

(
3 cos2 ῑ− 1

)
4(1− ē2)

]
.

• This is valid for ε2 ≲ 10−3 ≲ √
ε
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Conclusion

• Studying alternatives to the Kerr spacetime allows to test GR
• We have constructed solutions to DHOST theories by performing a

disformal transformation of the Kerr spacetime using a geodesic scalar
• While asymptotically very similar to Kerr, the solution presents many

interesting properties: noncircularity, horizon not located at constant r and
not a Killing horizon, the stationary limit is distinct from the event horizon

• In two particular limits, simpler metrics were obtained, and they could be
useful in studying the properties of noncircular spacetimes

• We have calculated the secular variation of orbital parameters for stars
around a deformed black hole, and shown that the no-hair theorem of GR
is violated in general for these spacetimes

• In the particular limit of D ∼ 1+ ϵ, we derived the maximal deformation
compatible with current observations, and used it to predict the pericenter
precession for other stars, which may be measured in the future
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Regular coordinates

• After the coordinate change

t → v − r −
∫ 2Mr

∆
dr , φ→ −Φ− a

∫ dr
∆
,

the disformed Kerr metric reads

ds̃2 = −
(

1 + D −
2Mr
ρ2

)
dv2 + 2

1 + D −
D

1 +

√
r2+a2

2Mr

 dvdr

− D

1 −
1

1 +

√
a2+r2

2Mr


2

dr2

+
4aMr sin2 θ

ρ2 dvdΦ + 2a sin2
θdrdΦ + ρ

2dθ2

+
sin2 θ

(
2a4 cos2 θ + 4a2Mr sin2 θ + a2r2 [3 + 2 cos(2θ)] + 2r4)

2ρ2 dΦ2
.



Stability of the DHOST class under the disformal map

[Langlois, 2018]

• The Ia subclass can be obtained from Horndeski theories by a disformal
transformation of the metric [Ben Achour+; Crisostomi+, 2016; ...]:

g̃µν = C(ϕ,X)gµν + D(ϕ,X)∂µϕ∂νϕ

• The theories are different because of the matter coupling:

S̃ [g̃µν , ϕ] + Sm [g̃µν ,Ψm]
DISFORMAL−−−−−−−→ S [gµν , ϕ] + Sm [gµν ,Ψm]



Stably causal spacetime

• There can exist closed timelike curves in a spacetime, even in GR (Kerr
with a > M for example). We want to avoid such pathologies.

[Wald’s book]

Theorem: A spacetime (M0, gµν) is stably causal if and only if there exists
a differentiable function f on M0 such that ∇µf is a future (past) directed
timelike vector field

• We have such a function by construction, the scalar field ϕ itself. It serves
as a global time.

• The spacetime is globally causal if the region r > 0 is causally disconnected
from the region r < 0 (where CTCs are present even for Kerr)

• Some of the ad hoc deformations of Kerr proposed in the past contain
such pathologies [Johannsen, 2013]
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