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History of the problem

Ghost-free bigravity /Hassan, Rosen 2011/

Hairy black holes in bigravity, not asymptotically flat
/M.S.V. 2012/

Stability analysis of the embedded Schwarzschild
/Brito, Cardoso, Pani, 2013/, /Babichev, Fabbri, 2013/

Asymptotically flat hairy black holes
/Brito, Cardoso, Pani, 2013/

No asymptotically flat hairy black holes
(general analysis of theory structure)
/Torsello, Kocic, Mortsell, 2017/

Asymptotically flat hairy black holes – detailed analysis.
(many new results)
/R. Gervalle, M.S.V., Phys.Rev. D102 (2020) 124040/



Ghost-free bigravity



The ghost-free bigravity /Hassan and Rosen 2011/
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1

2κ1

∫
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−g d4x +
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2κ2

∫
R(f)
√
−f d4x

− m2
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where U = b0 +
∑4

n=1 bk Uk is constructed from γ̂ =

√
ĝ−1f̂ as
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∑
a

λa = [γ], U2 =
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([γ]2 − [γ2]),
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3!
([γ]3 − 3[γ][γ2] + 2[γ3]),

U4 = λ1λ2λ3λ4 = det(γ̂) .

m is the FP mass and flat space is a solution if

b0 = 4c3 + c4 − 6, b1 = 3− 3c3 − c4,

b2 = 2c3 + c4 − 1, b3 = −(c3 + c4), b4 = c4.



Equations

gµν =
1

m2
gµν , fµν =

1

m2
fµν ,

the lengthscale is the Compton wavelength 1/m and the field
equations become dimensionless

Gµν(g) = κ1 Tµν(g , f ) + κ1T
mat
µν , Gµν(f ) = κ2 Tµν(g , f ),

with

κ1 =
κ1

κ1 + κ2
≡ cos2 η, κ2 =

κ2

κ1 + κ2
≡ sin2 η.

A physical matter does not see fµν . We shall set Tmat
µν = 0.

Flat space gµν = fµν = ηµν is a solution. Small fluctuations δgµν
and δfµν around flat space describe

h(0)µν = κ1δfµν + κ2δgµν massless graviton

hµν = δfµν − δgµν massive graviton



Vacuum solutions

If gµν = fµν then

Gµ
ν(g) = 0, Gµ

ν(f ) = 0,

⇒ any vacuum metric is a solution. For example, the “bald
Schwarzschild”

gS
µνdx

µdxν = f Sµνdx
µdxν

= −
(

1− 2M

r

)
dt2 +

dr2

1− 2M/r
+ r2dΩ2

with r in units of 1/m and M in units of (MPl/m) MPl. Its
perturbations grow in time (instability) if M < 0.43

gµν = gS
µν + δgµν(t, xk), fµν = gS

µν + δfµν(t, xk)

/Brito, Cardoso, Pani, 2013/, /Babichev, Fabbri, 2014/.
The graviton mass m should not be too small.



Self acceleration

Setting fµν = C 2gµν with a constant C the bigravity equations
reduce to

Gµν + Λ gµν = 0,

whose solution is de Sitter (AdS is also possible) ⇒ self
acceleration driven by the effective cosmological constant

Λ ∼ m2κ1 ∼ 1/R2
Hub

motivation for massive gravitons. To agree with the observations,
either the graviton mass has to be very small (small m is better
than just small Λ),

m ∼ 1/RHub

or κ1 be very small, which is more interesting for us.



Hierarchy between the two gravitational couplings

Assume that κ1 is very small ⇒ hierarchy

κ1 � κ2 = 1− κ1 ∼ 1

Hierarchy is needed to remove the instability in the scalar sector by
assuming /Akrami, Hassan . . . 2015/

κ1
κ2
≈ κ1≤

(
Mew

MPl

)2

∼ 10−34 � 1,

with Mew ∼ 100 GeV. This is an upper bound for κ1, hence

κ1 = γ2 × 10−34 with γ ∈ [0, 1] and

1

m
∼
√
κ1 RHub ∼ γ × 10−17 RHub ∼ γ × 106 km ∼ γ × Solar size

⇒ mc2 ≈ 1
γ 10−16eV > 10−23 eV (to be commented on later)



Constructing hairy black holes



The ansatz and equations

ds2g = −Q(r)2dt2 +
dr2

N(r)2
+ r2dΩ2 ,

ds2f = −q(r)2dt2 +
dU(r)2

Y (r)2
+ U(r)2dΩ2.

Q2,N2, q2,Y 2 must all show a simple zero at some r = rH > 0.

The horizon is common for both metrics. The surface gravity
and the Hawking temperature are also the same.

Horizon radius rH measured by the g-metric can differ from
the radius U(rH) ≡ UH measured by the f-metric.

Independent equations:

N ′ = DN(r ,U,N,Y ),

Y ′ = DY (r ,U,N,Y ),

U ′ = DU(r ,U,N,Y ).

For a given rH the parameter UH = U(rH) completely characterizes
the boundary conditions at the horizon r = rH .



Integration – hairy black holes /M.S.V. 2012/

Choosing a value of UH and integrating the equations starting
from r = rH towards large values of r , one finds that

Either solutions approach for r →∞ the proportional AdS,
which is an asymptotic attractor: all perturbations decay for
r →∞
Or solutions become singular at a finite rsing > rH .

Trying randomly many different rH ,UH does not give anything
else. Expanding around flat space at infinity yields

A

r
+ Be−mr + Ce+mr

⇒ flat space is not attractor. To suppress the growing mode one
should set C = 0 and integrate from both sides (horizon and

infinity) using UH ,A,B as input parameters. This requires a fine
tuning for rH ,UH ⇒ additional information is needed.



Change of stability of Schwarzschild – bifurcation

gS
µνdx

µdxν = f Sµνdx
µdxν = −

(
1− rH

r

)
dt2 +

dr2

1− rH/r
+ r2dΩ2.

Perturbations around this “bald Schwarzschild”

gµν = gS
µν + e iωtδgµν(r , ϑ, ϕ), fµν = gS

µν + e iωtδfµν(r , ϑ, ϕ)

admits a negative mode solution with ω2 < 0 if rH < 0.86.
/Brito, Cardoso, Pani, 2013/, /Babichev, Fabbri, 2013/
This negative mode becomes a static zero mode for rH = 0.86,
providing a perturbative approximation of a new static solution
which bifurcates with the bald Schwarzschild.
This yields yields the input values for the parameters

rH = UH = 0.86, A = − rH
2
, B = 0.

We shall call this the GL (Gregory-Laflamme) point. Changing rH
iteratively yields “fully fledged” hairy solutions.



Numerical procedure

Desingularization of the equations at the horizon to be able to
start exactly at r = rH .

Using converging integral equation for r > rmax � rH .

Integration from two sides in the region [rH , rmax]: from
r = rH toward large r and from r = rmax toward small r via
the multiple shooting untill the two solutions match.



Asymptotically flat Hairy Black Holes



Solutions

Are labeled by values of rH and depend on the theory
parameters c3, c4 and κ1 cos2 η, κ2 = sin2 η.

Close to the GL point (rH = 86) solutions are very close to
Schwarzschild. If rH deviates from 0.86, solutions deviate
from Schwarzschild in the near horizon region where the
massive hair is located.

Solutions cease to existe beyond a minimal rmin
H or maximal

rmax
H values of the event horizon size. These values depend on
c3, c4, η.



Solution profiles
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Duality
The bigravity is invariant under

gµν ↔ fµν , κ1 ↔ κ2, bk ↔ b4−k

which translates to

κ1 ↔ κ2, Q ↔ q, N ↔ Y , U ↔ r , c3 → 3− c3, c4 → 4c3 + c4 − 6

If for some η, c3, c4 there is a hairy black hole solution for some

rH and UH

then for the dual set of parameters

η̃ = π/2− η, c̃3 = 3− c3, c̃4 = 4c3 + c4 − 6

there is the dual solution characterized by

r̃H = UH and ŨH = rH

Duality changes the black hole size: if rH < 0.86 then r̃H > 0.86.



Hairy Schwarzschild

Particularly interesting are hairy Schwarzschild solutions for κ1 = 0
or κ2 = 0 when one of the metric becomes exactly Schwarzschild
but the other remains hairy, because

Gµ
ν(g) = κ1 T

µ
ν(g , f ), Gµ

ν(f ) = κ2 T µν(g , f )

For κ1 ∼ 10−34 hary black holes must be very close to the hairy
Schwarzschild.
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Stability analysis



Time-dependent fields spherically symmetric fields

ds2g = −Q2dt2 +
dr2

N2
+ r2dΩ2,

ds2f = −
(
q2 − α2Q2N2

)
dt2 +

(
U ′2

Y 2
− α2

)
dr2 + U2dΩ2

− 2α

(
q +

QNU ′

Y

)
dtdr

where, expanding around a static background

Q(r , t) =
(0)

Q(r) + δQ(r , t), q(r , t) =
(0)

q(r) + δq(r , t),

N(r , t) =
(0)

N(r) + δN(r , t), Y (r , t) =
(0)

Y (r) + δY (r , t),

U(r , t) =
(0)

U(r) + δU(r , t), α(r , t) = δα(r , t)



Master equation

Assuming the harmonic time-dependence for all amplitudes

δQ(r , t) = e iωtδQ(r), δN(r , t) = e iωtδN(r), . . .

the temporal variable separates and the linearized field equations
reduce (after heavy transformations) to a one-channel equation

d2Ψ

dr2∗
+
(
ω2 − V (r)

)
Ψ = 0 (♠)

describing the scalar polarization of the massive graviton. Here Ψ
is a linear combination of perturbations, V (r) is made of the
background amplitudes, and the tortoise coordinate

r∗ ∈ (−∞,∞) when r ∈ [rH ,∞)

Negative modes of (♠), that is bound state solutions with ω2 < 0,
correspond to unstable modes.



Unstable solutions

All solutions with κ1 = κ2 = 1/2 (η = π/4) previously found by
the Portuguese group are unstable.

A puzzle: what they decay to ? Not to Schwarzschild, because it is
also unstable. Can they radiate away all their energy such that the
horizon disappear ? In GR such a process is classically impossible.
What about bigravity ?



Stable solutions

Hairy black holes become stable in the physically interesting case
of small κ1 = cos2 η !



Parameter space



Parameters

Solutions depend in 4 parameters rH , c3, c4, η. A complete
classification is very difficult.

Strategy: choose representative values

c3 = −c4 = 5/2

and classify all solutions depending on rH , κ1 = cos2 η.

Perform the duality to obtain

c3 = 1/2, c4 = 3/2

and classify again.



ADM mass M(rH) for different η
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ADM mass
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the hair mass Mhair can be positive or negative. The physical value
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and can be small. For rH → 0 the g-metric develops a naked
singularity but the ADM mass remains finite. For rH → rmax

H

solutions disappear via fusion of roots and show regions where the
effective graviton mass becomes imaginary.



Parameter space for c3 = −c4 = 5/2
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Physical solutions

Gµ
ν(g) = κ1 T

µ
ν(g , f ), Gµ

ν(f ) = κ2 T µν(g , f ),

where κ1 = 10−34 (κ2 = 1− κ1 ≈ 1) ⇒ the physical g-metric is
extremely close to Schwarzschild, all the hair is contained in the
f-metric which is directly invisible.

Normally the hairy black holes cannot be distinguished from
Schwarzschild. However, in violant processes like black hole
collisions the source Tµ

ν(g , f ) can become strong enough to
overcome the 1034 suppression ⇒ the hairy features can become
visible.

It is possible that “hairy signatures” are contained in GW signals
from black hole mergers. These signatures should be stronger for
small black holes.



Approximation for small κ1

Gµν(g) = κ1 Tµν(g , f ), Gµν(f ) = κ2 Tµν(g , f ),

1. Set κ1 = 0 then g=Schwarzschild of radius rH .

2. Solve Gµν(f ) = Tµν(g , f ) to find f as function of rH .

3. Use the solution to compute the source Tµν(g , f ).

4. Return to κ1 6= 0 can compute the mass

MADM ≈
rH
2

+ κ1

∫ ∞
rH

r2T00(g , f )dr

Steps 2 and 3 give interesting result: the components of fµν and
T00(g , f ) become very large as rH → 0.



Solution for fµν on Schwarzschild background
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Figure: The amplitudes U,Y in the f-metric, the ”hair energy density”
T00(g , f ) and its integral E (r) become very large for small rH .



Approximation for M for small κ1

M(rH) ≈ rH
2

+ κ1
0.005

(rH)4.6

Assuming κ1 = γ2 × 10−34 (with γ ∈ [0, 1]) the minimum is

(rH)min ≈ 0.52 γ1.35 km, Mmin ≈ 0.2 γ1.35 ×M�

⇒ size and mass of the lightest hairy black hole. As for the
heaviest,

(rH)max ∼ 106 km, Mmin ∼ 3× 106M�



Summary of results

The ghost-free bigravity theory admits indeed stationary and
asymptotically flat solutions describing black holes with a massive
graviton hair.

For them not to be unphysically heavy, one is bound to assume the
graviton mass to be 1/m = γ × 106 km with γ ∈ [0, 1]. The
agreement with the cosmological data is then achieved by
assuming that κ1 = γ2 × (Mew/MPl)

2 = γ2 × 10−34.

Stable hairy black holes are described by a g-metric which is
extremely close to Schwarzschild, but their f-metric is different.
Their mass ranges from 0.2 γ1.35 ×M� to 0.3× 106 γ1.35 ×M�.
Yet heavier black holes in the theory should be “bald”.

If the bigravity theory indeed applies to describe physics, the
astrophysical black holes cannot be bald Schwarzschild because it
is unstable. They should be hairy Schwarzschild hiding hair in the
f-metric.



Summary of results

The f-metric is not coupled to matter and cannot be directly
probed, while the deviation of the “visible” g-metric from
Schwarzschild is suppressed by the factor of 10−34. Therefore, in
usual conditions hairy black holes should be undistinguishable from
the usual GR black holes.

In black hole collisions the interaction between the two metrics
may produce Tµν(g , f ) strong enough to overcome the 10−34

suppression in Gµν(g) = κ1 Tµν(g , f ). Then the deviation from GR
may become visible, perhaps it is contained in signals from black
hole mergers detected by LIGO/VIRGO.

The effect should be larger for small black holes because the fµν
components are very large for small rH thus enhancing Tµν(g , f ).
It is possible that hair imprints will be visible when smaller mass
mergers are detected. The observed bound m < 10−23 eV is also
presumably because only massless GW have been seen so far.


