Constraints on light scalars from PS191 results

Krasnov I. V.

INR RAS

07.06.2021

for "Quarks" online workshop "New Physics at the Intensity Frontier"

co-authors:

Dmitry Gorbunov, Sergey Suvorov e-Print: 2105.11102 [hep-ph]

Table of contents

- 1 Introduction
- 2 PS191 experiment
- 3 Kaon production and decay
- 4 Light scalar production
- Geometrical factor
- 6 Light scalar decay
- Continue the continue of the continue that th
- 8 Final esimation
- Onclusion

Introduction

$$\mathscr{L}_{SH} = \mu H^{\dagger} H \phi + \frac{\beta}{2} H^{\dagger} H \phi^2. \tag{1}$$

Light scalar can be:

- fully determined by its mass m_{ϕ} and mixing angle θ ;
- produced by the SM particles via mixing and can decay into the SM particles through the same mixing;
- a natural part of the extended Higgs sector;
- messenger to the dark matter;
- playing a role of inflaton.

PS191 experiment

Figure 1: Layout of the PS191 experiment at CERN.

General idea:

$$N_{\phi} = N_{POT} \times \sum_{K=K^{+}, K^{-}, K_{L}} \frac{N_{K}}{N_{sim}} \cdot Br(K \to \pi \phi) \cdot \xi_{K} \cdot P.$$
 (2)

Kaon production and decay

Figure 2: Charged (left) and neutral (right) kaon production (upper row) and decay (lower row) points constrained in the Y direction within the decay volume.

Light scalar production

Figure 3: Feynman diagrams for kaon decays into scalar ϕ .

$$Br(K^{\pm} \to \pi^{\pm} \phi) = \frac{1}{\Gamma_{K^{\pm}}} \frac{2p_{\phi_{CM}}}{m_{K^{\pm}}} \frac{|\mathcal{M}|^{2}}{16\pi m_{K^{\pm}}} \approx 1.6 \times 10^{-3} \frac{2p_{\phi_{CM}}}{m_{K^{\pm}}} \theta^{2}, \quad (3)$$

$$Br(K_L \to \pi^0 \phi) = \frac{1}{\Gamma_{K_L}} \frac{2p_{\phi_{CM}}}{m_{K_L}} \frac{|Re[\mathcal{M}]|^2}{16\pi m_{K_L}} \approx 5.7 \times 10^{-3} \frac{2p_{\phi_{CM}}}{m_{K_L}} \theta^2, (4)$$

$$p_{\phi_{CM}} = rac{M_K}{2} \sqrt{\left(1-rac{\left(m_\phi+m_\pi
ight)^2}{m_K^2}
ight)\left(1-rac{\left(m_\phi-m_\pi
ight)^2}{m_K^2}
ight)}\,.$$

Light scalar production

Figure 4: A total number of the light scalars expected to be produced in kaon decays for $\theta^2 = 10^{-8}$. Note that > 95% of K^+ that reach the dump and > 80% of K^+ that enter the soil lose all of their momentum before decaying. There are no stopped K^- and K_I^0 decays since these kaons are captured by the nuclei.

Geometrical factor

Figure 5: Left panel: the geometrical factor ξ for the light scalars as a function of its mass for light scalars produced in neutral and charged kaon decays. Right panel: spectra of the light scalars that reach the detector for a set of masses and $\theta^2 = 10^{-8}$

Light scalar decay

$$\Gamma(\phi \to l^{+}l^{-}) = \frac{G_{F}m_{l}^{2}m_{\phi}}{4\sqrt{2}\pi} \left(1 - \frac{4m_{l}^{2}}{m_{\phi}^{2}}\right)^{\frac{3}{2}} \theta^{2}, \qquad (5)$$

$$\Gamma(\phi \to \pi^{+}\pi^{-}) = 2\Gamma(\phi \to \pi^{0}\pi^{0}) = \frac{G_{F}m_{\phi}^{3}}{8\sqrt{2}\pi} \left(\frac{2}{9} + \frac{11}{9}\frac{m_{\pi}^{2}}{m_{\phi}^{2}}\right)^{2} \left(1 - \frac{4m_{\pi}^{2}}{m_{\phi}^{2}}\right)^{\frac{1}{2}} \theta^{2}, \qquad (6)$$

$$P = \left(1 - \exp\left(-\Gamma_{visible} \, \Delta l \, M_{\phi}/p_{\phi}\right)\right) \, \exp\left(-\Gamma_{tot} \, d \, M_{\phi}/p_{\phi}\right),$$

$$\Gamma_{tot} = \sum \Gamma(\phi \to ...).$$

Light scalar decay

Figure 6: Left panel: scalar branching ratios. Right panel: scalar lifetime τ_{ϕ} for $\theta=1$ and critical mixing $\theta_{\rm crit}$ (for a weaker mixing the scalar reaches the PS191 detector).

Light scalar detection

Figure 7: Left panel: the simulated number of light scalar decays in the detector volume in various decay modes, $\theta^2=10^{-8}$. Right panel: contribution of the different initial kaon decay points to the final exclusion: the region above the solid line is excluded at 90% CL from negative searches at PS191, $N_{POT}=0.3\times10^{19}$.

11 / 16

Final estimation

Figure 8: The region outlined by the solid line is excluded at 90% CL from negative searches at PS191.

Conclusion

- In the parameter space of mixing angle and scalar mass, (θ, M_{ϕ}) our study closes previously viable regions of masses 100-150 MeV and $\theta^2 \sim 10^{-7} 10^{-6}$, and $M_{\phi} \sim 200 300$ MeV, $\theta^2 \sim 10^{-9} 10^{-8}$.
- Our analysis can be extended straightforwardly to models with other patterns of scalar couplings to SM particles.
- Our results may be further refined.

Thank you for your attention!

Backup slides

in target and		in soil outside
decay tunnel	in the beam dump	decay tunnel
83833	117493	133535
37439	899	6984
19646	1824	11186
92048	4572	18268
446	113028	106499
40580	886	3856
25606	1571	5479
	decay tunnel 83833 37439 19646 92048 446 40580	decay tunnel in the beam dump 83833 117493 37439 899 19646 1824 92048 4572 446 113028 40580 886

Table 1: Decayed kaon budget for a total simulated statistics of $N_{POT} = 2 \times 10^6$.

QUARKS-2021, 07.06.2021

Backup slides

Figure 9: Kinematic distributions of the neutral (top plots) and charged (bottom plots) kaons decayed in the decay volume, beam dump, and sand (from left to right).