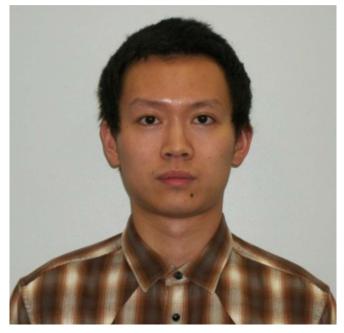
How Inflationary Gravitons Affect Gravitational Radiation & the Force of Gravity Richard Woodard (U. of Florida) Quantum Gravity & Cosmology June 8, 2021

### Diversity in Physics Researchers from 3 Continents

谭林涛 (Lintao Tan)中国



#### Τσάμης Νικόλαος (Nick Tsamis) Ελλάδα



### Inflation Rips Virtual Gravitons from the Vacuum

• This is what caused the tensor power spectrum

 $\Delta_h^2(k) \cong \frac{\hbar G H^2(t_k)}{\pi c^5}$  (NB a tree order QG effect)

The occupation numbers are staggering

 $N(t,k) = \frac{\pi \Delta_h^2(k)}{64Gk^2} \times a^2(t) \qquad \text{(Setting $\hbar$ and $c$ back to one)}$ 

- These gravitons must change particle kinematics & the force of gravity
- It even happens on flat space background
  - E.g., detecting gravitational radiation using pulsar timing
  - E.g., QG corrections to the Newtonian potential

$$\Psi(r) = -\frac{GM}{r} \left\{ 1 + \frac{41}{10\pi} \frac{\hbar G}{c^3 r^2} + \cdots \right\}$$

### How Does One Study These Effects?

- 1. Compute the graviton self-energy
  - $g_{\mu\nu}(x) \equiv a^2 [\eta_{\mu\nu} + \kappa h_{\mu\nu}(x)]$   $\kappa^2 \equiv 16\pi G$ •  $-i [\mu\nu \Sigma^{\rho\sigma}](x; x')$  the 1PL2 point function for h
  - $-i[^{\mu\nu}\Sigma^{\rho\sigma}](x;x')$  the 1PI 2-point function for  $h_{\mu\nu}$
- 2. Use it to quantum-correct the linearized Einstein Equation •  $\mathcal{L}^{\mu\nu\rho\sigma}h_{\rho\sigma}(x) - \int d^4x' [^{\mu\nu}\Sigma^{\rho\sigma}](x;x')h_{\rho\sigma}(x') = \frac{1}{2}\kappa T_{lin}^{\mu\nu}(x)$
- 3. Solve the equation for gravitons & for the response to a point mass
  - $T_{lin}^{\mu\nu}(x) = 0$   $\rightarrow$   $h_{\mu\nu}(x) = \epsilon_{\mu\nu} u(t,k) e^{i\vec{k}\cdot\vec{x}}$  with  $\epsilon_{\mu0} = 0 = k_i\epsilon_{ij} = \epsilon_{ii}$
  - $T_{lin}^{\mu\nu}(x) = -Ma(t)\delta^{3}(\vec{x})\delta_{0}^{\mu}\delta_{0}^{\nu} \rightarrow \kappa h_{00} = -2\Psi(t,r) \& \kappa h_{ij} = -2\Phi(t,r)$

### $-i[^{\mu\nu}\Sigma^{\rho\sigma}](x;x')$ is a bi-tensor density $\rightarrow$ How do we represent its tensor structure?

- Exploit the symmetries of cosmology
  - $ds^2 = -dt^2 + a^2(t)d\vec{x} \cdot d\vec{x} \rightarrow \text{homogeneity & isotropy}$
- Special tensors are
  - $\delta_0^{\mu}$  (time is special)
  - $\bar{\eta}^{\mu\nu} \equiv \eta^{\mu\nu} + \delta^{\mu}_{0} \delta^{\nu}_{0}$  (spatial metric)
  - $\bar{\partial}^{\mu} \equiv \partial^{\mu} + \delta^{\mu}_{0} \partial_{0}$  (spatial derivative)
- Initial Representation

 $-i[^{\mu\nu}\Sigma^{\rho\sigma}](x;x') = \sum_{i=1}^{21} [^{\mu\nu}\mathcal{D}_i^{\rho\sigma}](x;x') \times T^i(x;x')$  (5 on flat space)

• Reflection Invariance  $\rightarrow$  21-7 = 14 independent  $T^i(x; x')$  's

•  $[^{\mu\nu}\mathcal{D}_3^{\rho\sigma}] = \bar{\eta}^{\mu\nu}\delta_0^{\rho}\delta_0^{\sigma} \& [^{\mu\nu}\mathcal{D}_4^{\rho\sigma}] = \delta_0^{\mu}\delta_0^{\nu}\bar{\eta}^{\rho\sigma} \rightarrow T^4(x;x') = T^3(x';x)$ 

$$-i[^{\mu\nu}\Sigma^{\rho\sigma}](x;x') = \sum_{i=1}^{21} [^{\mu\nu}\mathcal{D}_i^{\rho\sigma}] \times T^i(x;x')$$

• The 
$$T^{i}(x; x')$$
 depend on  
 $a, a', i\delta^{4}(x - x') \& \Delta x^{2} \equiv (x - x')^{2}$   
• E.g.,  $T^{2}(x; x') = \frac{\kappa^{2} \ln(a)}{16\pi^{2}} \left[\frac{438}{15}\partial^{4} + \cdots + \frac{184}{3}a^{2}a'^{2}H^{4}\right] i\delta^{4}(x - x') + \frac{\kappa^{2}}{64} \left\{ \left[\frac{61}{120}\partial^{6} + \cdots \right] \left[\frac{\ln(\mu^{2}\Delta x^{2})}{\Delta x^{2}}\right] + \cdots + a^{3}a'^{3}H^{6} \left[11\partial_{0}^{2} + \partial^{2}\right] \left[\ln(H^{2}\Delta x^{2})\right]^{2} \right\}$ 

- Inherited from flat space
- Strongest de Sitter effects

| i | $[^{\mu u}\mathcal{D}_{i}^{ ho\sigma}]$                                        | i  | $[^{\mu u}{\cal D}_i^{ ho\sigma}]$                                                 | i  | $[^{\mu u}\mathcal{D}_{i}^{ ho\sigma}]$                                                                   |
|---|--------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------|
| 1 | $\overline{\eta}^{\mu u}\overline{\eta}^{ ho\sigma}$                           | 8  | $\overline{\partial}^{\mu}\overline{\partial}^{ u}\overline{\eta}^{ ho\sigma}$     | 15 | $\delta^{(\mu}_{0}\overline{\partial}^{\nu)}\delta^{\rho}_{0}\delta^{\sigma}_{0}$                         |
| 2 | $\overline{\eta}^{\mu( ho}\overline{\eta}^{\sigma) u}$                         | 9  | $\delta^{(\mu}_{0}\overline{\eta}^{\nu)(\rho}\delta^{\sigma)}_{0}$                 | 16 | $\delta^{\mu}_{0}\delta^{\nu}_{0}\overline{\partial}^{ ho}\overline{\partial}^{\sigma}$                   |
| 3 | $\overline{\eta}^{\mu\nu} \delta^{\rho}_{0} \delta^{\sigma}_{0}$               | 10 | $\delta^{(\mu}_{0}\overline{\eta}^{\nu)(\rho}\overline{\partial}^{\sigma)}$        | 17 | $\overline{\partial}^{\mu}\overline{\partial}^{\nu}\delta^{\rho}_{0}\delta^{\sigma}_{0}$                  |
| 4 | $\delta^{\mu}_{\ 0}\delta^{\nu}_{\ 0}\overline{\eta}^{ ho\sigma}$              | 11 | $\overline{\partial}^{(\mu}\overline{\eta}^{ u)( ho}\delta^{\sigma)}_{0}$          | 18 | $\delta^{(\mu}_{0}\overline{\partial}^{\nu)}\delta^{(\rho}_{0}\overline{\partial}^{\sigma)}$              |
| 5 | $\overline{\eta}^{\mu\nu} \delta^{(\rho}_{0} \overline{\partial}^{\sigma)}$    | 12 | $\overline{\partial}^{(\mu}\overline{\eta}^{ u)( ho}\overline{\partial}^{\sigma)}$ | 19 | $\delta^{(\mu}_{0}\overline{\partial}^{\nu)}\overline{\partial}^{\rho}\overline{\partial}^{\sigma}$       |
| 6 | $\delta^{(\mu}_{0}\overline{\partial}^{ u)}\overline{\eta}^{ ho\sigma}$        | 13 | $\delta^{\mu}_{0}\delta^{\nu}_{0}\delta^{\rho}_{0}\delta^{\sigma}_{0}$             | 20 | $\overline{\partial}^{\mu}\overline{\partial}^{\nu}\delta^{(\rho}_{0}\overline{\partial}^{\sigma)}$       |
| 7 | $\overline{\eta}^{\mu u}\overline{\partial}^{ ho}\overline{\partial}^{\sigma}$ | 14 | $\delta^{\mu}_{0}\delta^{\nu}_{0}\delta^{(\rho}_{0}\overline{\partial}^{\sigma)}$  | 21 | $\overline{\partial}^{\mu}\overline{\partial}^{\nu}\overline{\partial}^{ ho}\overline{\partial}^{\sigma}$ |

### Constraints on the $T^{i}(x; x')$ involve divergences

• Divergence on one point  $D_{\nu} \times -i[^{\mu\nu}\Sigma^{\rho\sigma}](x;x') = \sum_{i=1}^{10} [^{\mu}\mathcal{D}_{i}^{\rho\sigma}] \times S^{i}(x;x')$ • Divergence on each point

$$D_{\nu}D'_{\sigma} \times -i[^{\mu\nu}\Sigma^{\rho\sigma}](x;x') = \delta^{\mu}_{0}\delta^{\rho}_{0} \times R^{1}(x;x') + \bar{\eta}^{\mu\rho} \times R^{2}(x;x') + \delta^{\mu}_{0}\bar{\partial}^{\rho} \times R^{3}(x;x') + \bar{\partial}^{\mu}\delta^{\rho}_{0} \times R^{4}(x;x') + \bar{\partial}^{\mu}\bar{\partial}^{\rho} \times R^{5}(x;x')$$

| i | $[^{\mu} \mathcal{D}_i^{ ho\sigma}]$                                    | i  | $[^{\mu}\mathcal{D}_{i}^{ ho\sigma}]$                                       |
|---|-------------------------------------------------------------------------|----|-----------------------------------------------------------------------------|
| 1 | $\delta^{\mu}_{0}\delta^{ ho}_{0}\delta^{\sigma}_{0}$                   | 6  | $2\overline{\eta}^{\mu( ho}\delta^{\sigma)}_{\ 0}$                          |
| 2 | $2\delta^{\mu}_{0}\delta^{( ho}_{0}\overline{\partial}^{\sigma)}$       | 7  | $2\overline{\partial}^{\mu}\overline{\partial}^{(\rho}\delta^{\sigma)}_{0}$ |
| 3 | $\delta^{\mu}_{0}\overline{\eta}^{ ho\sigma}$                           | 8  | $2\overline{\eta}^{\mu( ho}\overline{\partial}^{\sigma)}$                   |
| 4 | $\delta^{\mu}_{0}\overline{\partial}^{ ho}\overline{\partial}^{\sigma}$ | 9  | $\overline{\partial}^{\mu}\overline{\eta}^{ ho\sigma}$                      |
| 5 | $\overline{\partial}^{\mu}\delta^{ ho}_{0}\delta^{\sigma}_{0}$          | 10 | $\overline{\partial}^\mu\overline{\partial}^ ho\overline{\partial}^\sigma$  |

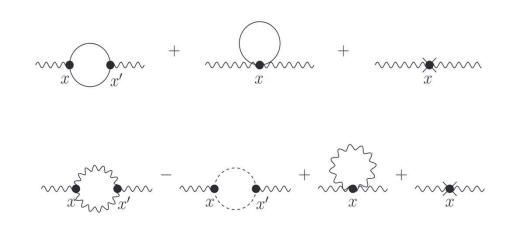
### Expressing the $S^{i}(x; x')$ in terms of the $T^{i}(x; x')$ and the $R^{i}(x; x')$ in terms of the $S^{i}(x; x')$

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                               | N                     |                                                                                                         |             |                                                                                  |
|--------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                              | $S^i(x;x')$           | Expansion in $T^j = T^j(x; x')$ and $T^{jR} = T^j(x'; x)$                                               |             |                                                                                  |
| $\begin{array}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $         | $S^1$                 | $(D-1)aHT^{3} + (\partial_{0} - aH)T^{13} - \frac{1}{2}\nabla^{2}T^{14R} + aH\nabla^{2}T^{16R}$         |             |                                                                                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                               | $S^2$                 | $(\frac{D-1}{2})aHT^5 + \frac{1}{4}T^9 - \frac{1}{2}aHT^{10R}$                                          |             |                                                                                  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                              |                       | $+\frac{1}{2}(\partial_0 - aH)T^{14} + \frac{1}{4}\nabla^2 T^{18} - \frac{1}{2}aH\nabla^2 T^{19R}$      | $R^i(x,x')$ | Expansion in $S^j - S^j(x; x')$                                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                | $S^3$                 | $(D-1)aHT^{1} + aHT^{2} + (\partial_{0} - aH)T^{3R} - \frac{1}{2}\nabla^{2}T^{5R} + aH\nabla^{2}T^{7R}$ |             |                                                                                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                               | $S^4$                 | $(D-1)aHT^7 + \frac{1}{2}T^{10} + aHT^{12}$                                                             | $R^2$       | $\partial_0' S^6 -  abla^2 S^8$                                                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                               |                       | $+(\partial_0 - aH)T^{16} + \frac{1}{2}\nabla^2 T^{19} + aH\nabla^2 T^{21}$                             | $R^3$       | $\partial_0' S^2 - S^3 - \nabla^2 S^4$                                           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                               | <i>c</i> <sup>5</sup> |                                                                                                         | $R^4$       | $(\partial_0'-a'H')S^5-S^6-\nabla^2S^7+2a'H'S^8+(D-1)a'H'S^9+a'H'\nabla^2S^{10}$ |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                               | S°                    | $I^{\circ} - \frac{1}{2} \partial_0 I^{\circ} I^{\circ} + \nabla^2 I^{\circ} I^{\circ}$                 | $R^5$       | $\partial_0' S^7 - S^8 - S^9 - \nabla^2 S^{10}$                                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                               | $S^6$                 | $\frac{1}{4}\partial_0 T^9 - \frac{1}{4}\nabla^2 T^{10R}$                                               |             |                                                                                  |
| $S^{9} 	T^{1} - \frac{1}{2}\partial_{0}T^{5R} + \nabla^{2}T^{7R}$                    | $S^7$                 | $\frac{1}{2}T^5 - \frac{1}{4}T^{10R} + \frac{1}{4}\partial_0 T^{18} - \frac{1}{2}\nabla^2 T^{19R}$      |             |                                                                                  |
|                                                                                      | $S^8$                 | $\frac{1}{2}T^2 + \frac{1}{4}\partial_0 T^{10} + \frac{1}{4}\nabla^2 T^{12}$                            |             |                                                                                  |
| $S^{10} 		 T^7 + \frac{1}{2}T^{12} + \frac{1}{2}\partial_0 T^{19} + \nabla^2 T^{21}$ | $S^9$                 | $T^1 - \frac{1}{2}\partial_0 T^{5R} + \nabla^2 T^{7R}$                                                  |             |                                                                                  |
|                                                                                      | $S^{10}$              | $T^7 + \frac{1}{2}T^{12} + \frac{1}{2}\partial_0 T^{19} + \nabla^2 T^{21}$                              |             |                                                                                  |

### Graviton loops more complex than matter loops

- Each matter vertex is conserved  $D_{\mu} \times -i[^{\mu\nu}\Sigma^{\rho\sigma}](x;x') = 0$   $D'_{\rho} \times -i[^{\mu\nu}\Sigma^{\rho\sigma}](x;x') = 0$ • 4 Structure functions (2 on flat space)  $T^{12}, T^{16}, T^{18} \& T^{19}$
- Graviton vertices are not conserved, Only the double-divergence vanishes  $D_{\mu} \times D'_{\rho} \times -i[^{\mu\nu}\Sigma^{\rho\sigma}](x;x') = 0$

→ 9 Structure functions (3 on flat space)  $T^{12}$ ,  $T^{16}$ ,  $T^{18}$ ,  $T^{19}$ ,  $S^2$ ,  $S^4$ ,  $S^7$ ,  $S^8$  &  $S^{10}$ 



### How $-i[^{\mu\nu}\Sigma^{\rho\sigma}]$ depends on $T^{12}(x;x')$ & $S^4(x;x')$

#### • Ricci and Weyl Operators

•  $\Pi_A^{\mu\nu} \equiv \bar{\partial}^{\mu} \bar{\partial}^{\nu} - \nabla^2 \bar{\eta}^{\mu\nu}$  (spatial transverse projector)

• 
$$\mathcal{R}^{\mu\nu}_A \equiv \Pi^{\mu\nu}_A + \frac{(D-2)\nabla^2}{\partial_0 - Ha} Ha\delta^{\mu}_0 \delta^{\nu}_0$$

• 
$$\mathcal{C}_{AA}^{\mu\nu\rho\sigma} \equiv \Pi_A^{\mu(\rho} \Pi_A^{\sigma)\nu} - \frac{1}{D-2} \Pi_A^{\mu\nu} \Pi_A^{\rho\sigma}$$

- T<sup>12</sup> Dependence (annihilated by a single divergence)
  - $-\frac{1}{2}C_{AA}^{\mu\nu\rho\sigma}\frac{1}{\nabla^2}T^{12}(x;x')$
- S<sup>4</sup> Dependence (only annihilated by double divergence)

• 
$$\frac{1}{\partial_0 - Ha} \delta_0^{\mu} \delta_0^{\nu} \times \mathcal{R}_A^{\rho\sigma}(x') \times S^4(x;x') + \mathcal{R}_A^{\mu\nu}(x) \times \frac{1}{\partial_0' - H'a'} \delta_0^{\rho} \delta_0^{\sigma} \times S^4(x';x)$$

### The Lichnerowicz Operator $\mathcal{L}^{\mu u ho\sigma}$ on de Sitter

On Gravitons

$$\mathcal{L}^{\mu\nu\rho\sigma}\left[u(t,k)e^{i\vec{k}\cdot\vec{x}}\epsilon_{\rho\sigma}\right] = -\frac{1}{2}a^{2}\left[\partial_{0}^{2} + 2aH\partial_{0} + k^{2}\right]u(t,k) \times e^{i\vec{k}\cdot\vec{x}}\epsilon^{\mu\nu}$$

On Potentials

$$\mathcal{L}^{\mu\nu\rho\sigma} \Big[ -2\delta^0_\rho \delta^0_\sigma \Psi(t,r) - 2\overline{\eta}_{\rho\sigma} \Phi(t,r) \Big]$$
  
•  $\mu = 0, \nu = 0 \quad \Rightarrow \quad a^2 \Big[ 6a^2 H^2 \Psi - 2 \big( \nabla^2 - 3a H \partial_0 \big) \Phi \Big]$ 

- $\mu = 0, \nu = j$   $\rightarrow$   $a^2 \partial^j [2aH\Psi + 2\partial_0 \Phi]$
- $\mu = i, \nu = j$   $\Rightarrow$   $a^2 \partial^i \partial^j [\Psi \Phi] + a^2 \delta^{ij} [-(\nabla^2 + 2aH\partial_0 + 6a^2H^2)\Psi + (\nabla^2 4aH\partial_0 2\partial_0^2)\Phi]$
- Only need 2 equations  $\rightarrow$  use  $a^2[2aH\Psi + 2\partial_0\Phi] \& a^2[\Psi \Phi]$

### Tree order solutions

- For gravitons
  - $u_0(t,k) = \frac{H}{\sqrt{2k^3}} \left[ 1 \frac{ik}{Ha} \right] \exp\left[\frac{ik}{Ha}\right] \rightarrow \frac{H}{\sqrt{2k^3}} \left[ 1 + \frac{k^2}{2H^2a^2} + \cdots \right]$
  - This is what causes the tensor power spectrum
- Response to a point mass
  - $\Psi_0(t,r) = \Phi_0(t,r) = -\frac{GM}{ar}$
  - Just a de Sitter version of the Newtonian potential of flat space
  - Gravitational "slip"  $\Psi \Phi = 0$  in classical general relativity, but not in modified gravity or for quantum gravity

The  $\int d^4x' [\mu\nu \Sigma^{\rho\sigma}](x;x')h_{\rho\sigma}(x')$  side of the equation

• On gravitons

$$-\frac{1}{2}a^{2}\left[\partial_{0}^{2}+2Ha\partial_{0}+k^{2}\right]u_{1}(t,k)=\int d^{4}x'iT^{2}(x;x')u_{0}(t',k)e^{-i\vec{k}\cdot\Delta\bar{x}}$$

Response to a point mass

 $\begin{aligned} & 4H^{3}\Psi_{1} + 4a^{2}\partial_{0}\Phi_{1} = 2\int d^{4}x' \left\{ \begin{aligned} & iT^{14}(x';x)\Psi_{0}(x') + \\ & \left[ 3iT^{5}(x';x) - iT^{10}(x;x') - iT^{19}(x;x')\nabla'^{2} \right]\Phi_{0}(x') \end{aligned} \right\} \\ & a^{2}\Psi_{1} - a^{2}\Phi_{1} = -2\int d^{4}x' \left\{ iT^{16}(x';x)\Psi_{0}(x') + \left[ 3iT^{7}(x';x) + iT^{12}(x;x') \right]\Phi_{0}(x') \right\} \end{aligned}$ 

# What about reality & causality? Schwinger-Keldysh Formalism

- Work in conformal coordinates
  - $d^2s = -dt^2 + a^2(t)d\vec{x} \cdot d\vec{x} = a^2[-d\eta^2 + d\vec{x} \cdot d\vec{x}]$
- Replace each  $T^{i}(x; x')$  by  $T^{i}_{++}(x; x') + T^{i}_{+-}(x; x')$ 
  - They have a relative minus sign
  - And each  $\Delta x^2$  is replaced by  $\Delta x^2_{\pm\pm}$
- The Schwinger-Keldysh intervals
  - $\Delta x_{++}^2 \equiv \|\vec{x} \vec{x}'\|^2 (|\eta \eta'| i\epsilon)^2$
  - $\Delta x_{+-}^2 \equiv \|\vec{x} \vec{x}'\|^2 (\eta \eta' + i\epsilon)^2$  (NB they cancel for  $\eta < \eta'$ )
- $\ln(H^2 \Delta x^2_{++}) \ln(H^2 \Delta x^2_{+-}) = 2\pi i \theta (\eta \eta' ||\vec{x} \vec{x}'||)$ 
  - This makes  $iT^{i}(x; x')$  real and vanish outside the past light-cone

## Results from a matter contribution (MMC $\varphi$ ) arXiv:1101.5805 & 1510.03352

- For gravitons
  - $u_1(t,k) = 0$  (also true on flat space)
- Response to a point mass

• 
$$\Psi(t,r) = -\frac{GM}{ar} \left\{ 1 + \frac{G}{20\pi a^2 r^2} - \frac{GH^2}{30\pi} [\ln(a) + 9\ln(aHr)] + \cdots \right\}$$

• 
$$\Psi - \Phi = -\frac{GM}{ar} \left\{ 0 + \frac{G}{30\pi a^2 r^2} - \frac{GH^2}{30} \times 20aHr + \cdots \right\}$$

- Fractional  $\frac{G}{a^2r^2}$  corrections just de Sitter versions of known flat space effects
- Fractional  $\tilde{G}H^2$  corrections unique to de Sitter
- Perturbation theory breaks down at large distances & late times!
- Gravitational slip persists to spatial infinity

### Inflationary gravitons can affect gravitons (hep-ph/9602317 & arXiv:2103.08547)

- $-\frac{1}{2}a^2 |\partial_0^2 + 2aH\partial_0 + k^2| u_1(t,k) =$  Source
  - Source ~  $H^2 a^4 \ln(a) \rightarrow u_1 \rightarrow -\frac{1}{2}[\ln(a)]^2$
  - Source  $\sim H^2 a^3 \ln(a) \rightarrow u_1 \rightarrow \frac{\ln(a)}{a}$
  - Source ~  $H^2 a^2 \ln(a) \rightarrow u_1 \rightarrow \frac{\ln(a)}{a^2}$

Source 
$$\sim H^2 a^4 \rightarrow u_1 \rightarrow -\frac{2}{3}\ln(a)$$
  
Source  $\sim H^2 a^3 \rightarrow u_1 \rightarrow \frac{1}{a}$   
Source  $\sim H^2 a^2 \rightarrow u_1 \rightarrow \frac{1}{a^2}$ 

- Leading parts of  $T^2(x; x')$  give
  - $\frac{\kappa^2 \ln(a)}{16\pi^2} \times \frac{184}{3} a^2 a'^2 H^4 \times i\delta^4(x x') \Rightarrow \text{Source} = -\frac{23\kappa^2 H^2}{6\pi^2} \times u_0(t,k) \times H^2 a^4 \ln(a)$   $\frac{\kappa^2}{64\pi^4} \times a^3 a'^3 H^6 [11\partial_0^2 + 2\partial^2] [\ln(H^2 \Delta x^2)]^2 \Rightarrow \text{Source} \to \frac{27}{2\pi^2} \times u_0(\infty,k) \times H^2 a^4 \ln(a)$
- Physical interpretation
  - Spin-spin interaction (absent for scalars) remains effective as graviton red shifts
  - Fractional correction to  $\Delta_h^2(k)$  of  $GH^2 \times N^2$  might eventually be resolved by 21cm data
  - Note again the breakdown of perturbation theory

### Wait a minute! Isn't quantum gravity nonrenormalizable?

- Use QG as an effective field theory in the sense of Donoghue
  - Inflation produces IR gravitons → these are IR effects
  - Leading IR effects from nonlocal and UV finite parts of  $-i[^{\mu\nu}\Sigma^{\rho\sigma}](x;x')$
- Extract derivatives to make primitive contributions integrable  $\int d^4x'$ 
  - $\frac{a^2 a'^2 \kappa^2 H^4}{\Delta x^{2D-4}} = \frac{a^2 a'^2 \kappa^2 H^4 \partial^2}{2(D-3)(D-4)} \left[ \frac{1}{\Delta x^{2D-6}} \right]$  (could take D = 4 except for factor of  $\frac{1}{D-4}$ )

• Add 
$$0 = \frac{4\pi^{D/2}}{\Gamma\left(\frac{D}{2}-1\right)} i\delta^{D}(x-x') - \partial^{2} \left[\frac{\mu^{D-4}}{\Delta x^{D-2}}\right]$$
  
• 
$$\frac{a^{2}a'^{2}\kappa^{2}H^{4}}{\Delta x^{2D-4}} = \frac{4\pi^{D/2}a^{2}a'^{2}\kappa^{2}H^{4}i\delta^{D}(x-x')}{2(D-3)(D-4)\Gamma\left(\frac{D}{2}-1\right)} + \frac{a^{2}a'^{2}\kappa^{2}H^{4}\partial^{2}}{2(D-3)(D-4)}\left[\frac{1}{\Delta x^{2D-6}} - \frac{\mu^{D-4}}{\Delta x^{D-2}}\right]$$

• Expand last term around D = 4

• 
$$\frac{a^2 a'^2 \kappa^2 H^4}{\Delta x^{2D-4}} = \frac{4\pi^{D/2} a^4 \kappa^2 H^4 i \delta^D (x-x')}{2(D-3)(D-4)\Gamma\left(\frac{D}{2}-1\right)} - \frac{1}{4}a^2 a'^2 \kappa^2 H^4 \partial^2 \left[\frac{\ln(\mu^2 \Delta x^2)}{\Delta x^2}\right] + (D-4)$$

# Now renormalize with a local *D*-dimensional counterterm

- All have a factor of
  - $\sqrt{-g} = a^D = a^4 \times a^{D-4} = a^4 [1 + (D-4)\ln(a) + \cdots]$
- Primitive contribution plus counterterm

• 
$$\frac{a^{2}a'^{2}\kappa^{2}H^{4}}{\Delta x^{2D-4}} - \frac{4\pi^{\frac{D}{2}}a^{D}\kappa^{2}H^{4}i\delta^{D}(x-x')}{2(D-3)(D-4)\Gamma(\frac{D}{2}-1)}$$
  
= 
$$-2\pi^{2}\kappa^{2}H^{4}a^{4}\ln(a)i\delta^{4}(x-x') - \frac{1}{4}a^{2}a'^{2}\kappa^{2}H^{4}\partial^{2}\left[\frac{\ln(\mu^{2}\Delta x^{2})}{\Delta x^{2}}\right] + O(D-4)$$

- Coefficient of logarithms a unique prediction of quantum gravity
- Finite part of counterterm controlled by  $\mu$  gives
  - $-2\pi^2 a^4 \kappa^2 H^4 i \delta^4 (x x')$   $\rightarrow$  weaker by a factor of  $\ln(a)$

## What happens when perturbation theory breaks down? -> sum up the leading logarithms

- Two sources of large logarithms require two techniques
  - Stochastic method fails (arXiv:0803.2377), as does RG (arXiv:0805.3089)
- Propagators have a "normal" part and a "tail" part

• 
$$D = 4 \rightarrow i\Delta(x; x') = \frac{1}{4\pi^2} \frac{1}{aa'\Delta x^2} - \frac{H^2}{8\pi^2} \ln\left(\frac{1}{4}H^2\Delta x^2\right)$$

- Some large logarithms come from the tail part
  - Recall  $\frac{\kappa^2}{64^{-4}} \times a^3 a'^3 H^6 [11\partial_0^2 + 2\partial^2] [\ln(H^2 \Delta x^2)]^2$
  - Can probably sum these using a variant of Starobinsky's stochastic technique
- Some large logarithms associated with UV divergences
  - Recall  $\frac{\kappa^2 \ln(a)}{16\pi^2} \times \frac{184}{3} a^2 a'^2 H^4 \times i\delta^4(x-x')$
  - Can probably sum these using a variant of the Renormalization Group

### Model using nonlocal effective actions

- Factors of  $\ln(a)$  on de Sitter consistent with  $\frac{1}{\Box}R$ 
  - $\left[ f(t) = -\frac{1}{a^3} \frac{d}{dt} \left[ a^3 \dot{f} \right] \rightarrow \frac{1}{\Box} R = -\int_0^t dt' \frac{1}{a^3(t')} \int_0^{t'} dt'' a^3(t'') \times 12H^2 = -4\ln(a) + \cdots$
- NB such factors build up and freeze in
- Hence they can remain today on largest scales
  - Could affect vacuum energy
    - Perhaps inflation is begun by a large  $\Lambda > 0$  and gradually ended by  $E_{int} < 0$  of inflationary gravitons?
    - Perhaps there is no Dark Energy but rather a residual effect caused by the onset of matter domination?
  - Could affect the force of gravity
    - Perhaps there is no Dark Matter but rather a modification of gravitational force?

### The Gauge Issue

- Graviton propagator is gauge dependent
  - On flat space  $-i[^{\mu\nu}\Sigma^{\rho\sigma}](x;x')$  inherits this gauge dependence
  - Leading de Sitter contributions probably also
- We must eliminate this!
  - But it's important to keep a sense of perspective
  - Just because something is gauge dependent does not mean it vanishes!
- Inflationary gravitons SHOULD modify gravity
  - MMC scalars do & there is no gauge issue
  - Purging gauge dependence likely only changes numerical coefficients
  - We have already done this on flat space

# Our Program: Short-circuit Donoghue's path to low energy QG effects

- Basic Setup 

  Scatter 2 massive particles with some massless field
  - Then add QG corrections
- Donoghue (gr-qc/9405057)
  - Use inverse scattering to infer QG corrections to exchange potential
  - Compute amplitudes in Fourier momentum space
  - Isolate nonlocal, nonanalytic contributions
- Our variation
  - View amplitudes as correcting effective field equation for massless field
  - Work locally in position space
  - Isolate same nonlocal, nonanalytic contributions
    - This makes amplitudes resemble effective field equation

# Apply Donoghue Identities to extract QG corrections to a massless scalar on flat space

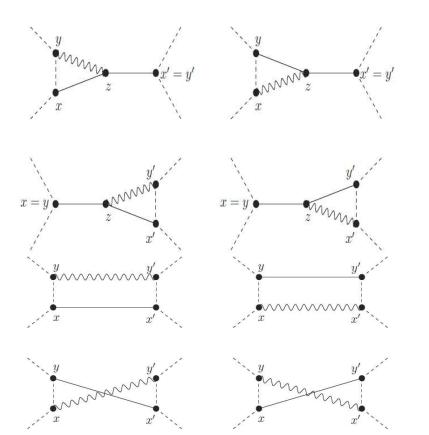
• 
$$i\Delta_m(x; y) \ i\Delta(x; x') i\Delta(y; x')$$
  
 $\rightarrow \frac{i\delta^D(x-y)}{2m^2} [i\Delta(x; x')]^2$ 

• 
$$m^2 (\partial_x + \partial_y)^2 [i\Delta_m(x;y) i\Delta_m(x';y')i\Delta(x;x')i\Delta(y;y')]$$
  
 $\rightarrow -\delta^D (x-y)\delta^D (x'-y')[i\Delta(x;x')]^2$ 

- $m^2 (\partial_x + \partial_y)^2 [i\Delta_m(x;y) i\Delta_m(x';y') i\Delta(x;y') i\Delta(y;x')]$  $\rightarrow + \delta^D (x-y) \delta^D (x'-y') [i\Delta(x;x')]^2$
- Capture the nonanalytic parts which give low energy QG effects
  - Lifted from gr-qc/9405057 and hep-th/9602121
  - We only translated them to position space!

### All the gauge dependence cancels

Some of the many diagrams



Each class gives the same spacetime form times a different  $C_i(a, b)$ 

| i     | 1               | a              | $\frac{1}{b-2}$ | $\frac{(a-3)}{(b-2)^2}$ |
|-------|-----------------|----------------|-----------------|-------------------------|
| 0     | $+\frac{3}{4}$  | $-\frac{3}{4}$ | $-\frac{3}{2}$  | $+\frac{3}{4}$          |
| 1     | 0               | 0              | 0               | +1                      |
| 2     | 0               | 0              | 0               | 0                       |
| 3     | 0               | 0              | +3              | -2                      |
| 4     | $+\frac{17}{4}$ | $-\frac{3}{4}$ | 0               | $-\frac{1}{4}$          |
| 5     | -2              | $+\frac{3}{2}$ | $-\frac{3}{2}$  | $+\frac{1}{2}$          |
| Total | +3              | 0              | 0               | 0                       |

### Conclusions

• The graviton self-energy quantum-corrects the linearized Einstein Eqn

$$\mathcal{L}^{\mu\nu\rho\sigma}h_{\rho\sigma}(x) - \int d^4x' \, [^{\mu\nu}\Sigma^{\rho\sigma}](x;x')h_{\rho\sigma}(x') = \frac{1}{2} \, \kappa T^{\mu\nu}(x)$$

- Strength of effects depends on occupation number
  - Flat Space: N(t, k) = 0  $\rightarrow$  Not much happens
  - Inflation:  $N(t,k) = \frac{\pi \Delta_h^2(k)}{64Gk^2} \times a^2(t)$   $\rightarrow$  Large distance & late time growth
- Graviton contributions are more complicated than those from matter
  - 9 Structure Functions versus only 4 for matter (3 versus 2 on flat space)
  - Also stronger:  $u_1 = 0$  for MMCS but  $u_1(t, k) \rightarrow GH^2[\ln(a)]^2 \times u_0(t, k)$  for gravitons
- Large space & time logarithms cause breakdown of perturbation theory
  - Sum "tail" logs with Starobinsky formalism & UV logs with RG
  - Model using Nonlocal Effective Action 
     Iikely gives modified gravity at late times
- More work needed to eliminate gauge dependence
  - Use Donoghue identities to view amplitude as modification of  $-i[^{\mu\nu}\Sigma^{\rho\sigma}](x;x')$
  - But this will only change numerical coefficients of corrections