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Inflation Rips Virtual Gravitons from the Vacuum

• This is what caused the tensor power spectrum 
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గ∆೓

మ (௞)

଺ସீ௞మ
ଶ (Setting ћ and back to one)

• These gravitons must change particle kinematics & the force of gravity
• It even happens on flat space background 

• E.g., detecting gravitational radiation using pulsar timing 
• E.g., QG corrections to the Newtonian potential 
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How Does One Study These Effects?

1. Compute the graviton self-energy 
• ఓ஝

ଶ
ఓ஝ ఓ஝

ଶ

• ఓ஝ ఘఙ the 1PI 2-point function for ఓ஝

2. Use it to quantum-correct the linearized Einstein Equation 
• ఓ஝ఘఙ
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3. Solve the equation for gravitons & for the response to a point mass 
• ௟௜௡
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is a bi-tensor density 
How do we represent its tensor structure?
• Exploit the symmetries of cosmology 

• ଶ ଶ ଶ  homogeneity & isotropy

• Special tensors are 
• ଴

ఓ (time is special)
• ఓ஝ ఓ஝
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଴
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଴ (spatial derivative)

• Initial Representation 
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• Reflection Invariance  21-7 = 14 independent ௜ ᇱ ‘s
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• The ௜ ᇱ depend on 
,  ,   ସ ᇱ &   ଶ ᇱ ଶ

• E.g., ଶ ᇱ சమ ୪୬ ௔
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• Inherited from flat space
• Strongest de Sitter effects



Constraints on the involve divergences
• Divergence on one point
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Expressing the in terms of the 
and the in terms of the 



Graviton loops more complex than matter loops
• Each matter vertex is conserved 

ఓ
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 4 Structure functions (2 on flat space)
ଵଶ ଵ଺ ଵ଼ ଵଽ

• Graviton vertices are not conserved, 
Only the double-divergence vanishes 
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 9 Structure functions (3 on flat space)
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How depends on & 

• Ricci and Weyl Operators 
• ஺

ఓ஝ ఓ ஝ ଶ ఓ஝ (spatial transverse projector)
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• ଵଶ Dependence (annihilated by a single divergence)
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• ସ Dependence (only annihilated by double divergence)
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The Lichnerowicz Operator on de Sitter

• On Gravitons 
ఓ஝ఘఙ ௜௞ȉ௫⃗
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• On Potentials 
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• Only need 2 equations  use   ଶ
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Tree order solutions

• For gravitons 
• ଴
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• This is what causes the tensor power spectrum

• Response to a point mass 
• ଴ ଴

ீெ

௔௥

• Just a de Sitter version of the Newtonian potential of flat space 
• Gravitational “slip” in classical general relativity, but not in 

modified gravity or for quantum gravity



The side of the equation

• On gravitons 
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What about reality & causality? 
 Schwinger-Keldysh Formalism

• Work in conformal coordinates 
• ଶ ଶ ଶ ଶ ଶ

• Replace each ௜ ᇱ by ାା
௜ ᇱ

ାି
௜ ᇱ

• They have a relative minus sign
• And each ଶ is replaced by ା±

ଶ

• The Schwinger-Keldysh intervals 
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• This makes ௜ ᇱ real and vanish outside the past light-cone



Results from a matter contribution (MMC )
arXiv:1101.5805 & 1510.03352

• For gravitons 
• ଵ (also true on flat space)

• Response to a point mass 
•
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• Fractional ீ

௔మ௥మ corrections just de Sitter versions of known flat space effects
• Fractional ଶcorrections unique to de Sitter
• Perturbation theory breaks down at large distances & late times!
• Gravitational slip persists to spatial infinity



Inflationary gravitons can affect gravitons
(hep-ph/9602317 & arXiv:2103.08547)
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• Leading parts of ଶ ᇱ give 
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• Physical interpretation 
• Spin-spin interaction (absent for scalars) remains effective as graviton red shifts 
• Fractional correction to ௛

ଶ of ଶ ଶ might eventually be resolved by 21cm data
• Note again the breakdown of perturbation theory



Wait a minute! 
Isn’t quantum gravity nonrenormalizable?

• Use QG as an effective field theory in the sense of Donoghue 
• Inflation produces IR gravitons  these are IR effects
• Leading IR effects from nonlocal and UV finite parts of ఓ஝ ఘఙ

• Extract derivatives to make primitive contributions integrable ସ
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• Expand last term around 
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Now renormalize with a local -dimensional 
counterterm
• All have a factor of 

• ஽ ସ ஽ିସ ସ

• Primitive contribution plus counterterm

•
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• Coefficient of logarithms a unique prediction of quantum gravity

• Finite part of counterterm controlled by gives
• ଶ ସ ଶ ସ ସ ᇱ  weaker by a factor of 



What happens when perturbation theory breaks 
down? sum up the leading logarithms
• Two sources of large logarithms require two techniques 

• Stochastic method fails (arXiv:0803.2377), as does RG (arXiv:0805.3089) 

• Propagators have a “normal” part and a “tail” part 
•  ᇱ ଵ
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• Some large logarithms come from the tail part
• Recall சమ

଺ସ ర
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• Can probably sum these using a variant of Starobinsky’s stochastic technique

• Some large logarithms associated with UV divergences 
• Recall சమ ୪୬(௔)
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• Can probably sum these using a variant of the Renormalization Group



Model using nonlocal effective actions

• Factors of on de Sitter consistent with ଵ

⎕

•
ଵ

௔య

ௗ

ௗ௧
ଷ 

ଵ

⎕
ᇱ௧

଴

ଵ

௔య ௧ᇲ
ᇱᇱ௧ᇲ

଴
ଷ ᇱᇱ ଶ

• NB such factors build up and freeze in
• Hence they can remain today on largest scales

• Could affect vacuum energy 
• Perhaps inflation is begun by a large Λ > 0 and gradually ended by 𝐸௜௡௧ < 0 of inflationary gravitons?
• Perhaps there is no Dark Energy but rather a residual effect caused by the onset of matter domination?

• Could affect the force of gravity 
• Perhaps there is no Dark Matter but rather a modification of gravitational force?



The Gauge Issue

• Graviton propagator is gauge dependent 
• On flat space ఓ஝ ఘఙ inherits this gauge dependence 
• Leading de Sitter contributions probably also

• We must eliminate this! 
• But it’s important to keep a sense of perspective 
• Just because something is gauge dependent does not mean it vanishes!

• Inflationary gravitons SHOULD modify gravity 
• MMC scalars do & there is no gauge issue 
• Purging gauge dependence likely only changes numerical coefficients
• We have already done this on flat space



Our Program: Short-circuit Donoghue’s 
path to low energy QG effects

• Basic Setup  Scatter 2 massive particles with some massless field
• Then add QG corrections

• Donoghue (gr-qc/9405057)
• Use inverse scattering to infer QG corrections to exchange potential
• Compute amplitudes in Fourier momentum space
• Isolate nonlocal, nonanalytic contributions

• Our variation 
• View amplitudes as correcting effective field equation for massless field
• Work locally in position space
• Isolate same nonlocal, nonanalytic contributions 

• This makes amplitudes resemble effective field equation



Apply Donoghue Identities to extract QG 
corrections to a massless scalar on flat space
• ௠

ᇱ ᇱ
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ଶ
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• Capture the nonanalytic parts which give low energy QG effects
• Lifted from gr-qc/9405057 and hep-th/9602121 
• We only translated them to position space!



All the gauge dependence cancels
Some of the many diagrams Each class gives the same spacetime 

form times a different 𝒊



Conclusions
• The graviton self-energy quantum-corrects the linearized Einstein Eqn

ఓ஝ఘఙ
ఘఙ

ସ ᇱ ఓ஝ ఘఙ ᇱ
ఘఙ

ᇱ ఓ஝

• Strength of effects depends on occupation number 
• Flat Space:  Not much happens

• Inflation:    గ∆೓
మ (௞)

଺ସீ௞మ
ଶ  Large distance & late time growth

• Graviton contributions are more complicated than those from matter 
• 9 Structure Functions versus only 4 for matter (3 versus 2 on flat space)
• Also stronger: ଵ for MMCS but ଵ

ଶ ଶ
଴ for gravitons

• Large space & time logarithms cause breakdown of perturbation theory 
• Sum “tail” logs with Starobinsky formalism & UV logs with RG
• Model using Nonlocal Effective Action  likely gives modified gravity at late times

• More work needed to eliminate gauge dependence 
• Use Donoghue identities to view amplitude as modification of ఓ஝ ఘఙ

• But this will only change numerical coefficients of corrections


