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Inflation Rips Virtual Gravitons from the Vacuum

* This is what caused the tensor power spectrum

2
A% (k) = hGicgtk) (NB a tree order QG effect)
* The occupation numbers are staggering
2
N(t k) = %(kkz) X a®(t) (Setting h and ¢ back to one)

* These gravitons must change particle kinematics & the force of gravity

* It even happens on flat space background
* E.g., detecting gravitational radiation using pulsar timing
* E.g., QG corrections to the Newtonian potential

GM 41 hG
W(r) = ——{1+ +}
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How Does One Study These Effects?

1. Compute the graviton self-energy
* gu(x) = a’ [nw - Khw(x)] K? = 167G
o —([HVZPT](x;x") the 1PI 2-point function for b,
2. Use it to quantum-correct the linearized Einstein Equation
« LWPI, (x) — [ d*x'[MVEPT](x; xRy (X)) = Yok T, ()
3. Solve the equation for gravitons & for the response to a point mass

. Tl’lfr‘:(x) =0 = h,x) =c¢,ut, k)eiz"Z with €,0 = 0 = k;€;; = €

o« T (x) = —Ma(t)83(X)8y 8y 2 «hoy = —2W(t,7) & xh;; = —20(¢,7)

lin



—i[*VEPO](x; x') is a bi-tensor density =»
How do we represent its tensor structure?

* Exploit the symmetries of cosmology
e ds? = —dt? + a?(t)dx -dX =>» homogeneity & isotropy
* Special tensors are
. 65‘ (time is special)
« MY =V + 55‘5(‘,’ (spatial metric)
« 0 = 0* + 6850, (spatial derivative)
* Initial Representation
—i[PVZPo(x; x") = 12:11[“"2){)0](3(; x") x T (x; x") (5 on flat space)

* Reflection Invariance = 21-7 = 14 independent T*(x; x') ‘s
* [FD57] =65 88 & [MDL7] = 858017 D TH( x') = T (x'; 1)



* The T!(x; x") depend on

a,a , id*(x—x") & Ax*=

*E.g., T?(x;x") =
184 5 12
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* Inherited from flat space

 Strongest de Sitter effects
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—i[FZP](x; x') = Z[HVDip TIX T x)
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Constraints on the T*(x; x") involve divergences

* Divergence on one point
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Expressing the St(x; x") in terms of the T*(x; x")
and the R'(x; x") in terms of the S*(x; x")

g bondird Expansion in 79 = T/ (z; 2') and T7% = T7(z2'; x)
g (D—1)aHT? + (Bp—aH)T® — LV2TUE g HV2T16R
Ch (B)aHT® 4 1T° — 2aHT'™"
+3(0 — aH)T 4 V2T — LaHV?TR _ —
R (x;2") Expansion in S7 = S7(x;2")
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Graviton loops more complex than matter loops

Each matter vertex is conserved

D,u X —i.[“‘;Zp‘;] (x; x',) =0

D', x —=i[*YEP](x;x) =0
=>» 4 Structure functions (2 on flat space)
T12 ’ T16 ’ T18 & T19
Graviton vertices are not conserved,
Only the double-divergence vanishes

D, X D', x —i[®ZP7](x;x") = 0

=» 9 Structure functions (3 on flat space)
T12 T16 T18 T19
sz, s+, §7, s8g S0
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How —i[#V2P] depends on T4 (x; x") & S*(x; x")

* Ricci and Weyl Operators
« " = 0#9Y — V2nq#¥  (spatial transverse projector)

_ 2
- R =M 4 (50_2212 Has! 8y

. PHhvPo — qulpo)v 1 uvepo
CAA - HA HA D—2 HA HA

« T12 Dependence (annihilated by a single divergence)

vpo 1
- —1C4 " v—lez(x;x’)

« S* Dependence (only annihilated by double divergence)

1 U po ;1 ., Y 1 p ',
ao—Ha50 6(\)) X:RA (X ) XS4(x,X ) +RA (X) Xm50 6g XS4(x ,X)




The Lichnerowicz Operator L#VP9 on de Sitter

* On Gravitons
£ovea [u(e, ke ey, | = —v2a2[02 + 2aHB, + k2Ju(t, k) x eZe”
* On Potentials
LIVPT| 280839 (t,T) — 27 ) P(t, )]
cu=0v=0 > a?[6a’H*¥Y —2(V? —3aH0,)P|
eu=0,v=j =  a?0/[2aHY + 20,P]

eu=iv=j > a?d'd/[¥— D]+ a?59|—(V? + 2aHd, + 6a’H?)¥ +
(V2 — 4aH0d, — 20%)D|
* Only need 2 equations = use a?[2aH¥Y + 20,®] & a?[¥Y — P]



Tree order solutions

* For gravitons

" uo(t k) = V2Kk3 [1 " Ha exp[ ] \/2k 2H2a2 + ]
* This is what causes the tensor power spectrum

 Response to a point mass
Wy (t, 1) = Dy(t,1) = — =

ar
* Just a de Sitter version of the Newtonian potential of flat space

* Gravitational “slip” W — ® = 0 in classical general relativity, but not in
modified gravity or for quantum gravity



The [ d*x'[*VEP?](x; x")h,s (x") side of the equation

* On gravitons
—%2a?|05 + 2Hady + k*|uy (¢, k) = jd4x’iT2(x;x’)uo(t’,k)e“'%'”

* Response to a point mass

iTH(x": )W, (x") +
4H3WY; + 4a%dy®, = 2 [ d*x’ { (5o (x') }

13iT>(x";x) — iT™(x;x") — iT(x; x")V'2 | Dy ()
a’¥, —a’d, = -2 f d*x’ {iT(x'"; x)Wo(x") + [3iT7 (x"; x) + iT*2 (x; x") | Do (x)}



What about reality & causality?
=» Schwinger-Keldysh Formalism

* Work in conformal coordinates
» d%s = —dt? + a®(t)dX - dX = a®|—dn? + d¥ - d¥|

* Replace each T*(x; x") by TL, (x; x") + TL_(x; x")
* They have a relative minus sign
* And each Ax? is replaced by Ax$

* The Schwinger-Keldysh intervals

« AxF = IX = X172 = (In —n'| — ie)?

c Ax2_=||IX¥ = X'||? = (n—1n' + ie)? (NB they cancel forn < 1)
* In(H?Ax%,) — In(H?Ax%_) = 2mif(m —n' — [IX — %'|])

* This makes iT!(x; x") real and vanish outside the past light-cone



Results from a matter contribution (MMCo)
arXiv:1101.5805 & 1510.03352

* For gravitons

e u(t,k) =0 (also true on flat space)
* Response to a point mass
GM G GH?
Y(t,r) = —;{1 t o o In(a) + 91In(aHr)] + }
2
: qJ—cb:—G—M{0+ ¢ 2 ><20aHr+---}
ar 30ra“r 30
* Fractional corrections just de Sitter versions of known flat space effects

azr?
Fractional G H?corrections unique to de Sitter
Perturbation theory breaks down at large distances & late times!
Gravitational slip persists to spatial infinity



Inflationary gravitons can affect gravitons
(hep-ph/9602317 & arXiv:2103.08547)

« —%a?|0¢ + 2aHd, + k*|u,(t, k) = Source

* Source ~ H*a*In(a) < u; » —in@]* Source ~ H?a* < u; - —2mn(@

 Source ~ H?a3In(a) = u; - mc(la) Source ~H%a® > u, — =

a
In(a) 1
a2

 Source ~ H?*a?In(a) = u; - Source ~H%a? = u, > =
e Leading parts of T?(x; x') give

21 184 . 23k%H?
. K16?T(2a) X = a’a’?H* x i5*(x —x') =» Source = — 6];2 X ug(t, k) X H2a*In(a)
2172

2
x ala’3H®|110¢ + 282][ln(H2Ax2)]2 => Source - 2727: X uy(0, k) X H?a*In(a)

6414
* Physical interpretation
e Spin-spin interaction (absent for scalars) remains effective as graviton red shifts
* Fractional correction to A,Zl(k) of GH? x N? might eventually be resolved by 21cm data

* Note again the breakdown of perturbation theory



Wait a minute!
Isn’t quantum gravity nonrenormalizable?

* Use QG as an effective field theory in the sense of Donoghue
* Inflation produces IR gravitons = these are IR effects
* Leading IR effects from nonlocal and UV finite parts of —i[*VZP%](x; x")

* Extract derivatives to make primitive contributions integrable fd4x’
Cl2 ,2K2H4 a2 ’2K2H462 1
Ax2D—4 2(D 3)(D—4) [szD 6] (

 Add O=4n i6P(x —x) — 62[ _4]

could take D = 4 except for factor of DL)

r(z-1) pxb72
. a2 ,2K2H4 . 47TD/2 2 ’2K2H416D(x x) aza/2K2H4-62[ 1 B MD_4]
Ax2D—4 2(D-3)(D- 4)[‘(5_1) 2(D-3)(D—-4) |Ax?P=6  AxD=2

e Expand last term around D = 4
, a’a’?k*H* _anP/Z gt ?H4isP (x—x") 1

Ax2D-% 2(D-3)(D-H)T(3-1)

2 2
sa’a“x*H*9? [M] + (D —4)



Now renormalize with a local D-dimensional
counterterm
e All have a factor of
cJ—g=d°’ =a*xa’*=a*[1+ (D —-4)In(a) + -]
* Primitive contribution plus counterterm

D
a’a’?x2g* 4Am2 aDK2H4i6D(x—x’)

Ax2D=4 2(D-3)(D-4)r(3-1)

2 2
= —2n*k?’H*a*In(a)id*(x — x') — iaza’zKZH‘}az l%] +0(D —4)

» Coefficient of logarithms a unique prediction of quantum gravity

* Finite part of counterterm controlled by u gives
o —2m?a*k?H*i6*(x —x') =  weaker by a factor of In(a)



What happens when perturbation theory breaks
down? = sum up the leading logarithms

* Two sources of large logarithms require two techniques
e Stochastic method fails (arXiv:0803.2377), as does RG (arXiv:0805.3089)

* Propagators have a “normal” part and a “tail” part
° — . AN 1 1 B H2 l 5 5
D=4=> lA(x,x)—Mzaa,sz 8n21n(4H Ax )

* Some large logarithms come from the tail part

K? 3 13176 2 2 2 A +2\12
—— x a®a’®H°[110§ + 20°][In(H?Ax?)]
e Can probably sum these using a variant of Starobinsky’s stochastic technique

* Some large logarithms associated with UV divergences

2] 184 :
K16r;(2a) X = a’a’?H* x i6*(x — x")
e Can probably sum these using a variant of the Renormalization Group

e Recall

e Recall



Model using nonlocal effective actions

* Factors of In(a) on de Sitter consistent with éR

1 d : 1 t / 1 t' 17 7
« [1f(t) = —;E[cﬁf] -)ER = — [ dt e J, dt"a®(t") x 12H* = —41In(a) + -

* NB such factors build up and freeze in

* Hence they can remain today on largest scales

e Could affect vacuum energy

* Perhaps inflation is begun by a large A > 0 and gradually ended by E;;,; < 0 of inflationary gravitons?

* Perhaps there is no Dark Energy but rather a residual effect caused by the onset of matter domination?
e Could affect the force of gravity

* Perhaps there is no Dark Matter but rather a modification of gravitational force?



The Gauge Issue

* Graviton propagator is gauge dependent
* On flat space —i[*YZP](x; x") inherits this gauge dependence
* Leading de Sitter contributions probably also

* We must eliminate this!

e But it’s important to keep a sense of perspective
* Just because something is gauge dependent does not mean it vanishes!

* Inflationary gravitons SHOULD modify gravity
* MMC scalars do & there is no gauge issue

* Purging gauge dependence likely only changes numerical coefficients
* We have already done this on flat space



Our Program: Short-circuit Donoghue’s
path to low energy QG effects

 Basic Setup = Scatter 2 massive particles with some massless field
* Then add QG corrections

* Donoghue (gr-qc/9405057)
* Use inverse scattering to infer QG corrections to exchange potential
* Compute amplitudes in Fourier momentum space
* |solate nonlocal, nonanalytic contributions

* Our variation
* View amplitudes as correcting effective field equation for massless field
* Work locally in position space

* |solate same nonlocal, nonanalytic contributions
* This makes amplitudes resemble effective field equation



Apply Donoghue ldentities to extract QG
corrections to a massless scalar on flat space

* IA,(x;y) iA(x; x")iA(y; x')
i6°(x—y) .
ﬁ

2. ; / AW AW /
. mz(ax + ay) liA,, (x;y) iA, (x";y)iA(x; x)iA(y; v')]
- =8 (x —¥)6° (x" — yH[iA(x; x")]?
2 . . / / . I/ L !/
* mz(ax + ay) [iAy () A (x5 y") TIACG ') IACY; x7)]
= +8P (x — y)82 (x" = y")[iA(x; %))
e Capture the nonanalytic parts which give low energy QG effects

e Lifted from gr-qc/9405057 and hep-th/9602121
e We only translated them to position space!



All the gauge dependence cancels

Some of the many diagrams Each class gives the same spacetime
form times a different C;(a, b)
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Conclusions

* The graviton self-energy quantum-corrects the linearized Einstein Egn
[’Mvpghpa(x) N f d*x' [FYEPT](x; x,)hpa(x,) = 1L kTH* (x)

 Strength of effects depends on occupation number
* Flat Space: N(t,k) =0 =» Not much happens

2
* Inflation: N(t, k) = %&?

* Graviton contributions are more complicated than those from matter
* 9 Structure Functions versus only 4 for matter (3 versus 2 on flat space)
e Also stronger: u; = 0 for MMCS but uq(t, k) = GH?[In(a)]? X uy(t, k) for gravitons

* Large space & time logarithms cause breakdown of perturbation theory
* Sum “tail” logs with Starobinsky formalism & UV logs with RG
* Model using Nonlocal Effective Action =2 likely gives modified gravity at late times

* More work needed to eliminate gauge dependence
» Use Donoghue identities to view amplitude as modification of —i[*VZP?](x; x")
 But this will only change numerical coefficients of corrections

X a?(t) =» Large distance & late time growth



