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AID quantum gravity Most general action

Action to study

We start straight with [arxiv:1602.08475, arXiv:1606.01250]

S =

∫
dDx

√
−g
(
M2
PR

2
− Λ

+
λ

2

(
RFR(�)R+ LµνFL(�)Lµν +WµνλσFW (�)Wµνλσ

))

Here FX(�) =
∑
n≥0 fXn�

n and Lµν = Rµν − 1
DRgµν

This is the most general action to study linear perturbations
around MSS.

Thanks to the Bianchi identities one can further achieve
FL(�) = 0 in D = 4 and FL(�) = const in D > 4.
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AID quantum gravity Most general action

Pure gravity arguments why infinite derivatives appear

We start with

S =

∫
dDx

√
−g

P0 +
∑
i

Pi
∏
I

(ÔiIQiI)


Here P and Q depend on curvatures and O are operators

made of covariant derivatives.

Everywhere the respective dependence is analytic in IR.

Let’s name it general analytic gravity

Excluding all the terms which vanish around MSS and mas-
saging others we arrive to the action on the previous slide.
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AID quantum gravity Quadratic action

Spin-2 on MSS:

S2 =
1

2

∫
dx4

√
−ḡ h⊥νµ

(
�̄−

R̄

6

) [
P(�̄)

]
h⊥

µν

P(�̄) = 1 +
2

M2
P

λfR0
R̄+

2

M2
P

λFW

(
�̄ +

R̄

3

)(
�̄−

R̄

3

)

The Stelle’s case corresponds to FW = 1 such that

P(�̄)Stelle = 1 +
2

M2
P

λfR0
R̄+

2

M2
P

λ · 1 ·
(
�̄−

R̄

3

)

This is an obvious second pole which will be the ghost.

4/19



AID quantum gravity Quadratic action

Spin-0 on MSS:

S0 = −
1

2

∫
dx4

√
−ḡ φ(3�̄ + R̄)

[
S(�̄)

]
φ

S(�̄) = 1 +
2

M2
P

λfR0
R̄−

2

M2
P

λFR(�̄)(3�̄ + R̄)

This is the ghost in Einstein-Hilbert case FR = 0, but it is
constrained and is not physical.

Thus, S(�̄) can have one root as a function of �̄ and as such
generate one more pole in the propagator and it will be not
a ghost. That is like, F(�̄) = const

This would be exactly the scalar mode of a local f(R) grav-
ity.
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AID quantum gravity More real world

What else can AID quadratic action serve for?

• If we just start with the initially proposed quadratic in
curvature action it can accommodate many interesting so-
lutions without requiring any other more general gravity
model.

• For example, any conformally flat metric which satisfies
�R = r1R with constant r1 is a solution.

• In particular, Starobinsky inflation is an exact solution
here.

• Solution representing a ghost-free bouncing scenarios also
were found.
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AID quantum gravity More real world

We put forward the idea that the quadratic in curvatures
AID action is enough to attack quantization of gravity!
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AID quantum gravity FRW

Physical propagators around FRW:

ΦOsΦ→ Os =
(6λ�F(�)− 1)(2λ�FW (�) + 1)

2λ(F(�) + 1
3FW (�))

hijOthij → Ot = �(2λ�FW (�) + 1)

We want no ghosts in the tensor sector which implies there
is a canonical graviton only and also no ghosts in the scalar
sector which means at most a scalaron.
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AID quantum gravity Physics

Physical excitations

Effectively we modify the propagators as follows

�−m2→ G(�)

Recall, in D = 4 in (−+ ++)

L =
1

2
φ(�−m2)φ – good field

−� gives a ghost, +m2 gives a tachyon (for real m).
Consider

L =
1

2
φ(�−m2)(�− µ2)φ

This Lagrangian describes 2 physical excitations and the
second one is a ghost. The higher degree polynomial in �
will just produce more ghosts.

9/19



AID quantum gravity Physics

Analytic Infinite Derivative (AID) way around

To preserve the physics we demand

G(�) = (�−m2)e2σ(�)

where σ(�) must be an entire function resulting in the fact
that the exponent of it has no roots.

Thus

L =
1

2
φ(�−m2)e2σ(�)φ

So, yes, we can incorporate infinite number of derivatives
by employing properties of entire functions.
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AID quantum gravity FRW

FRW continued:

Os =
(6λ�F(�)− 1)(2λ�FW (�) + 1)

2λ(F(�) + 1
3FW (�))

= (�− µ2)e2σ0(�)

Ot = �(2λ�FW (�) + 1) = �e2σ(�)

Then, avoiding all odds:

FW (�) =
e2σ(�) − 1

2λ�

F(�) =
1

6λµ2
+

1

3µ2
(�− µ2)FW (�)
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AID quantum gravity Non-local scalar field

Non-local scalar field [arxiv:2103.01945]

Consider AID scalar field action:

L = −
1

2
φ(�−m2)f−1(�)φ−

λ

4!
φ4

and we use here (+−−−) signature.

Again, we demand the form-factor to be an exponent of an
entire function. We also normalize it as f(0) = f(m2) = 1 to
preserve the local answers in the IR limit.

We can adjust the fall rate for large momenta by choosing
the form-factor. Power-counting convergence requires the fall
faster than ∼ 1/p2.

12/19



AID quantum gravity Non-local scalar field

Tadpole and fate of the Wick rotation

A =

∫
d4kf(k2

0 − ~k
2)

k2
0 − ~k2 −m2

AE = −i
∫
d4kEf(−k2

0E − ~k
2)

k2
0E + ~k2 +m2

where k0E = −ik0.

A∞C =

∫ R

r

f(0)(i+ 1)− f(z2)− if(−z2)

z2
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AID quantum gravity Non-local scalar field

Fish and one-loop unitarity

0

As a matter of definition we write amplitudes in Euclidean
signature and analytically continue the result to Minkowski
values of external momenta. [Pius,Sen,arXiv:1604.01783]

M = −i
λ2

32π4
I(p)

We compute the integral with euclidean internal momentum
k and also account for poles shown above.
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AID quantum gravity Non-local scalar field

Result for the fish graph with f(�) = eα�

I(p) = −π3

+
2iπ2

αp2

[
eαp

2
− αp2Ei(αp2)− eαp

2/2 +
1

2
αp2Ei(αp2/2)

]
For α→ 0 we restore the logarithmic singularity common in

the cut-off regularization using the fact that for small values
of the argument

Ei(z) ≈ γ + log z + z

.

Mtotal = −i
λ2

32π4
(I(
√
s) + I(

√
t) + I(

√
u))
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AID quantum gravity Non-local scalar field

Result for the fish graph with f(k2) = f(−k2)

M(p) = −
λ2

64π3p

∫ ∞
0

J1(px)J1(kx)J1(qx)f(k2)f(q2)dkdqdx

+ i
λ2π

32
+

λ2

32p2

∫ p2

−p2
f(z)dz

If f(z) is an integrable function than the last term gives an
apparently universal ∼ 1/p2 contribution for any even form-
factor.

We can show numerically that the model remains weakly

coupled in contrast to f(p2) = e−αp
2

Examples used were f = e−p
4

and f = e−Γ(0,p4)−γ−log(p4)
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AID quantum gravity Higgs inflation

Non-local Higgs inflation as a toy model [arxiv:2006.06641]

The bottom-line AID modified action is as follows:

L =
1

2
M2
PRE +

1

2
φ�e2σ(�)φ− V (φ)

σ(�) is an entire function

and we return here to (−+ ++) signature.
We can make φ = 0,∞ to be ghost-free vacua but all the

way in between effective new modes appear. Namely, this
depends on algebraic roots of an equation

� e2σ(�) =
∂2V (φ)

∂φ2

Choosing the potential we may have several points where its
second derivative vanishes. For all other values φ we have
infinitely many new effective modes.
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AID quantum gravity Higgs inflation

What are these new modes? – Half of them are ghosts!

• As long as the second derivative of the potential is non-
zero there is an infinite number of new modes with complex
conjugate masses squared and all are heavy with |m| > MP

• The following condition

(Im(m2))2 < 9H2Re(m2)

guarantees no classical growing behavior for these new ef-
fective modes in an (A)dS space-time characterized by the
Hubble rate H.

• It is important to understand that values ofm are governed
mainly by the shape of the entire function and also by
the value of H originating from the potential while the
restriction which excludes growing classical behavior does
not depend on the entire function.
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AID quantum gravity Summary

Conclusions and Outlook

• A class of analytic infinite derivative (AID) theories has
been considered targeting the goal of constructing a UV
complete and unitary gravity. These models have clear
connection with SFT.

• It features many nice properties, like native embedding
of the Starobinsky inflation, finite Newtonian potential at
the origin, presence of a non-singular bounce, healing of
non-renormalizable models including Higgs inflation, etc.

• We provide an explicit computation showing that the phys-
ical propagator depends on just one entire function despite
previous studies where two independent functions were
considered.

• We describe how unitarity is maintained in AID field the-
ories and perform certain explicit checks including the Op-
tical Theorem verification.
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Thank you for listening!


