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Planck CMB map: Scale Invariance

Figure: Planck 2015 CMB map



Inflationary framework
Homogeneous, isotropic and spatially flat geometry
= Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

ds? = —di® + 295 dr? + r2dQ?

The Universe scale factor a(t) increases exponentially (N = 50 — 60 number of
e-foldings)

— Hubble parameter H = 192 almost constant

adt
= Comoving Hubble radius (aH)~* decreases i.e., < () <O0.
= Slow-roll conditions € = —% <1, n= i <1l ¢
Modifying General Relativity or addition of hypothetical matter fields
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Inflationary observables, consistency relations and new
physics

@ The key observables of inflationary paradigm are related to two and 3-point
correlations of primordial fluctuations.

@ The two-point correlations give the scalar power spectrum Pr, ~ 10~° and
its tilt ng =~ 1 — 2 , the tensor power spectrum is usually expressed through
tensor-to-scalar ratlo r= PT < 0.064 and the tilt of tensor power spectrum
(n¢) is not YET measured (Planck 2018).

@ 3-point correlations give non-Gaussianities (also called bispectrum).
measured by the parameter fy; and the current constraints are
faoe =0.84£5.0, fyi ' =—4+43, fortho = 26421 ,at 68% CL.

@ In the case of single field inflation there are so-called consistency relations
given by (Tensor and Maldacena consistency relations)

s 5
r=—8n;, fy = ﬁ(lfns).



Inflationary model building: Top down vs Bottom up

Complexity String theory/M-Theory [ - 101 gey
Generalized scalar-tensor Calabi-Yau
(or) Horndeski theories
...... —
Non-minimal
Non-canonical scalar - ~ 10 GeV

Non-minimal Minimal Non-

canonical scalar canonical scalar | | » Beyond SM

Minimal canonical
scalar (standard) Standard Model of ~100 GeV
Particle Physics

Taken from KSK (Ph.D. Thesis) arXiv: 1808.03701 [hep-th]
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Encyclopedia ~ 300 models

arXiv.org > astro-ph > arXiv:1303.3787

Astrophysics > Cosmology and Nongalactic Astrophysics
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Encyclopaedia Inflationaris
Jerome Martin, Christophe Ringeval, Vincent Vennin

The current flow of high accuracy astrophysical data, among which are the Cosmic Microwave Background (CMB) measurements by the
Planck satellite, offers an unprecedented opportunity to constrain the inflationary theory. This is however a challenging project given
the size of the inflationary landscape which contains hundreds of different scenarios. Given that there is currently no observational
evidence for primordial non-G ianities, isocurvature pi

or any other imal ion of the inflationary
paradigm, a reasonable approach is to consider the simplest models first, namely the slow-roll single field models with minimal kinetic
terms. This still leaves us with a very populated landscape, the exploration of which requires new and efficient strategies. It has been
customary to tackle this problem by means of approximate model independent methods while a more ambitious alternative is to study
the inflationary scenarios one by one. We have developed the new publicly available runtime library ASPIC to implement this last
approach. The ASPIC code provides all routines needed to quickly derive reheating consistent observable predictions within this class
of scenarios. ASPIC has been designed as an evolutive code which presently supports 74 different models, a number that may be
compared with three or four representing the present state of the art. In this paper, for each of the ASPIC models, we present and
collect new results in a systematic manner, thereby constituting the first Encyclopaedia Inflationaris. Finally, we discuss how this
procedure and ASPIC could be used to determine the best model of inflation by means of Bayesian inference.
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Planck 2018: Models of inflation
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R? inflation or Starobinsky inflation

2 2
° %R + %RZ is the first model of inflation (A.A. Starobinsky, 1980) with
the simplest one parameter extension of GR.

@ Inflation in this model is achieved by growth of scale factor in the following
manner (given by the solution of trace-equation OR = M?R)

a(t) ~ ap(ts—t) YOoe (=012,

3 ri(ts —t) 1
H: -_— = e
a 6 + 6(ts — t) te
. r2(t — t)2 n 4
R=6(H+2H* = 1=~ 4 __ — 4 .
(H+2H7) 3 3+3(1:S—1r)2+ ’

where t; mark the end of inflation corresponds to the slow-roll parameter
€= _H—’;I ~1
@ During inflation H is nearly constant and ¢ < 1 which is nothing but “ quasi

de Sitter (dS) " expansion.



@ In the light of recent CMB data, Starobinsky inflation stands out to be the

best fit with
2 12
VA VR
@ The scalaron mass is constrained as M ~ 5.5 x 107>Mp and the Hubble

parameter is Hiys ~ O(10)M.

@ This model features a graceful exit and power-law expansion stage with
a(t) oc t2/3 modulated by small oscillations (Starobinsky (1980,1981,1984),
Fundamental Interactions, MGPI Press, Moscow, 1984, p. 55-79).

@ R? model in Einstein frame gives a scalar field with an exponentially flat

2
potential V ~ (1 _ e‘\@ﬁ})

2
@ Several Starobinsky like inflationary scenarios with V ~ <1 —e 325"/’“;)
(which gives r = 128) were recently found in the context of String
theory/SUGRA.
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Starobinsky-like potentials
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Figure: E-model and T-model

General shape of potentials consistent with Planck. Can be distinguished within
(pre-)reheating considerations (S. S. Mishra, V. Sahni, A. A. Starobinsky
arXiv:2101.00271 [hep-th]. )




Foundations of R? model

@ R? inflation was first motivated from conformal anomaly of gravity which in
short given by (See review by M. J. Duff hep-th/9308075)

Gy =87G(T),

where (T,,) is the expectation value of the quantum energy momentum
tensor.

@ In D =4 it is known that

(TH) _b<W+§DR> +b'G+60R = OR= MR,

where W, G = R? — 4R, R* + RIMP7 R, ., are Weyl square and the
Gauss-Bonnet terms. The coefficients depend on the no. of massless
(conformal) scalar and vector fields.

Neglecting contribution from GB term we get OR ~ M?R .
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Renormalized R? gravity: K. S. Stelle and beyond

@ It was long ago shown by K. S. Stelle (1977) that R? gravity with a
Weyl square term (R, p0 R*?7 — 2R, R + %R2) is renormalizable
but however a tensor ghost appear in the theory that spoils unitarity.

@ Any finite derivative extension of Stelle gravity will introduce further
ghost instabilities into the theory due to Ostrogradsky theorem.

@ Infinite derivative (non-local) extension of Stelle gravity evades
Ostrogradsky theorem.

@ Further advancements in trace anomaly computations (A. O. Barvinsky,
Scholarpedia (2015), I. L. Buchbinder and I. L. Shapiro, QFT with
applications to quantum gravity (2021) indicate appearance of non-localities
in the quantum effective action of gravity.)



I
Non-locality is the crucial for UV physics

@ Studies of Non-local quantum field theories existed even from 1950's from
the seminal works of M. Born, R. Feynman, H. J. Bhabha, Pais, and
Ulenbeck, Efimov, Moffat, Krasnikov, Kuzmin, Tomboulis etc. Many
approaches towards quantum gravity such as further developments of
semi-classical approach to quantum gravity (where non-locality emerges with
non-analytic form factors), string theory (string and branes are non-local
objects and their interaction carries vertex terms involving infinite derivatives
eD/Mg), causal sets, non-commutative theories, loop quantumgravity and

asymptotic safety strongly indicate non-locality is the crux to achieve a UV

compete theory that is renormalizable and Unitary arXiv: 2005.09550

(Koshelev, KSK, A. A. Starobinsky), arXiv: 2105.08167 (L. Buoninfante)

AID gravity captures the long standing quests to build a much needed consistent
theoretical and phenomenological path towards quantum gravity:
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Analytic Infinite derivative (AID) gravity

M?2 1
S= /d4X vV—& <2pR + E |:RFR (DS) R+ W,uupo'FW (I:ls) W,uzzp0':|> .

Here the first term with M, being the reduced Planck mass is the canonical
Einstein-Hilbert General Realtivity (GR) Lagrangian, R as usual is the Ricci
scalar, while the part in brackets is the higher derivative modification of GR. The
crucial ingredient here is higher derivative formfactors F which further turn out to
be analytic non-polynomial, i.e. essentially non-local, functions of the covariant
d’'Alembertian 0. Hereafter, we use Og = [0/ M?2 with M being the scale of
non-locality and W,,,,» denotes the Weyl tensor.

Fr(Os) =Y fraDZ, Fw (Os) = fun? .
n=0 n=0

AID gravity — Quantum gravity? (See Alexey S. Koshelev's talk today and L.
Buoninfante’s talk tomorrow)
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SFT inspired Non-local gravity/AID gravity

Non-local gravity is a formulation aimed to construct UV complete (ghost free)
theory of gravity. It has several motivations including String field theory (String
and branes are non-local objects and their interaction carries vertex terms
involving infinite derivatives e™/M: s). N. V. Krasnikov (1987), Y. V. Kuzmin
(1989), Tomboulis (1997), Modesto (2011), Biswas et al (2011), Koshelev et al
(2016,2017)

(See Alexey S. Koshelev's talk today and Luca Buoninfante's talk tomorrow)
Non-locality in our scheme is introduced by inserting infinite derivatives in the
action. The non-local extension of Stelle gravity is

S = /dDXF{ PRJF)\(R]:R( Os)R + Wi po Fi (Hs) WHP7)

Fi's are analytic. The theory is Analytic Infinite Derivative (AID) gravity.



EOM of AID theory (FLRW case)

Equations of motion (EOM) of this theory are given by

Et=— [Mg +2\F </52) R] GHsH — éR}' (/52) RSY
O
MZ

+2A(VHD, —5gm)f< ) R+ \KCH — faﬂ (K7 +K) =

where

n—

Kb = 1 if 18”D (D)HIRIC ifnzj ( >"/
Mg n M2I M2 o ~ ./\/12’ |

n=1 1=0

The trace equation is

E—MgR—6ADf( - >R—/q;—2/c—0.

M3
S
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R?-like inflation in AID gravity

EOM of AID gravity even though looks complicated they can be solved by a
simple equation which is exactly the trace equation of local R? gravity

O M2
2
OR=MR = ]:(M2)R F(Mz)R
Since the CMB observations indicate scale invariance we expect
M <« Ms S M.

Using the above trace equation the trace equation for AID non-local gravity
become
M2
[M,% — 6AM*Fg (

M

2
)} R—AFY (%) (8"RO,R + 2M?R?) = 0

It was showed that the only solution of the above equation for R # 0 (See
Appendix C of 1711.08864) is

M? M3 M?
‘/_'.I(?l) (/\ﬂsz) —O 2)\ —3M2f1, where F]_E.FR (,/\/@)



Hierarchy of scales

L 4

|
I
M? H?
Figure: Hierarchy of mass scales in non-local R2-like inflation.

This can be seen heuristically by expanding the quadratic Ricci scalar part of the

action as
M? M?2 M2ROR
_ 4 /2 | ZPR P_R2 P
S /dx\/ gl2 +12/\/I2 +0 MEME

In the high curvature regime R > M? local quadratic curvature term is naturally

dominant and it is known to be scale invariance.
Quarks 2020




Scalar perturbations: two point correlations

@ To study perturbations around quasi dS
ds® = a° () [~ (1 +2®) dn? + ((1 — 2W) 6; + 2hy) dx'dx/] .

@ During inflation ® + ¥ ~ 0. W,,,p0 < (¢ + V) K, pe = 0. The curvature
perturbation
R 24H3 1
R:\U+H6T:\IJ+ P~ ——V,
B 24HH ¢

@ The second order action for the scalar perturbations is (¢s = 1)

525(s) — 1 _
2F1R

/d¢d3xﬁTW(i - M?)T .

7 (%)



Predictions of AID non-local R? inflation: Scalar part

@ T = 2RV is the canonical variable. To avoid any ghost degree of freedom

we need to impose
W (s) = 3}‘162%(55) ,

where ~5 is an entire function of d'Alembertian operator. Then, we can
express the form factor Fg in analytic form as

370 (O — M?) + (R + 3M?)
30+ R

Fr(Os) =F

)

The power spectrum and the scalar spectral index are the same as in the
local model (with adiabatic vacuum)
H2 1 dlIn PR
=—— , Ns=
1672€2 3AF1R | a1 ¢ dink |,_.u4

)

=/

~1-—

Pr



Predictions of AID non-local R?-like inflation: Tensor part

@ In the action we have Weyl square term with AID operators in it. Therefore,
it is natural to expect the tensor power spectrum gets modified compared to
local model. This is exactly what happens, the second order action for
tensor perturbations become (c; = 1)

R

_ _2R_
8Sr) = /d“x\/ ghi 2”T( M) (i—)hl’j,

which is related to the form-factor as

[e)]

FiR e’YT(Dr%MLQ -1

Fu (O = T 0, —

3/\/12
@ Computing the tensor power spectrum in the leading order in slow-roll we
obtain
Pr] e (i)
Tlk=aH = I :
a W2Af1R
UL 5 0



Tensor to scalar ratio

The tensor to scalar ratio in R?-like inflation in AID gravity gives

—2vr(i2)
r = 12 e 2M?2

N2
k=aH
0.1F ' ] CMB-S4 7
1 | Stage 3
i 1 BKI5/Planck+BAO J
0‘03 I anck+
1
1 N=55 — — — Non-local R>like
. 001 F : N =60 Non-local RX-like |
- N=55 Local R?
0.003 N=60 Local R? i
0.001 b
3X10—4 1 1 1 1 1 1 ]

0955 0960 0965 0970 0975 0980 0985 0990 0995 1.00
ng



Tensor to scalar ratio and single field consistency relation

The tensor tilt in this model is

dink |e—oy ~ dN

N_3_<2+3> R m(_ R
~one T\ T anz) o2 'T | o2

ntzdlnPT N_d|n737’(1+ 1)




Modified consistency relation and possibility of blue tilt
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Figure: The (ny, r) plane of latest Planck 2018.



Beyond two-point correlations: Scalar Non-Gaussianities

@ Beyond two point correlations it is interesting to see if there will be
non-Gaussianities in non-local R?-like inflation.
@ How non-locality effects the interactions of various curvature modes 7 and

Can they be detectable ?

Cubic interactions in local R? inflation Cubic interactions in Non-local R>-like inflation

Figure: In the above plot R = {R, R, D*OR} imply various tree level
interactions of different modes of the curvature perturbation in the local R?

and the non-local R?-like inflation. O (%) is some analytic non-local

operator.
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Reduced bispectrum fy;

@ To calculate bi-spectrum, first we expand our action to cubic order to the
leading order in slow-roll parameter. We consider the mode functions
R ~ —V/e given by OR = M?>R

@ New Interactions arise via the commutation relation in dS approximation
— R
Ov,R=V,0OR + 7V,R.
@ Our obtained cubic order action in R of AID gravity in the leading order
slow-roll approximation is

53 S5y =4eM? / d7d3x{ TYRVR-VR + TyRR? + Ty HR?
+TiHRRR 4+ TeH VR -VRR 4+ T¢H'R?
+ TFH *R'VR - VR’} :

where T;'s are dimensionless constants.
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fyr for standard configurations

From the observational point of view, three configurations of reduced bi-spectrum

fur for squeezed (ky — 0, ky = ks =

X)), equilateral (k; = k» = k3 = K)) and

orthogonal (ky = ko = K /4, ks = K/2) are the most relevant.
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Figure: In the above plots, fy; versus the scale of non-locality M; (in the units of
M,) is depicted for squeezed (blue), equilateral (red), and orthogonal (green)
configurations for the polynomial entire functions 7 given by egs. (4.19) and
(4.20) of arXiv:2003.00629 and represented by solid and dashed lines respectively.
Here N = 55 of e-foldings is assumed. In the limit M, — M, the predictions of
the local R? model are recovered.



Conclusions

o AID non-local gravity is the significant advancement over the Stelle's
fourth oder theory of gravity and is potential to be UV complete.

o Non-local R?-like inflation in this theory gives us two unique
predictions: (1) Modified consistency relation (2) Tensor blue tilt is
possible (which is often argued to rule out inflation) (3)
Non-Gaussianities (which is often feature of multifield non-canonical
models).

@ What if we add additional matter fields coupled to scalaron in the
non-local gravity? We should see their signature through special
shapes of NGs.

@ How to fix non-local form factors theoretically? (From string field
theory or by further understanding quantum gravity, see Koshelev and Luca’s
talk)? or Asymptotic Safety approach, see Frank Saueressig’s talk).



Thank you for your attention

Stay tuned to arXiv for further results!



