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Introduction and Motivations

I The de Sitter universe is a spacetime with positive
constant 4-curvature that is homogeneous and isotropic
in both space and time.

I It is completely characterized by only one constant and
has as many symmetries as the flat (Minkowski)
spacetime.

I De Sitter universe plays a central role in understanding
the properties of cosmological inflation.

I Inflation is a stage of accelerated expansion of the early
Universe. The expansion is quasi-exponential, and at
lowest order it can be approximated by de Sitter space.

I The inflationary stage allows the growth of quantum
fluctuations, which are necessary to explain observed
large-scale structure of the Universe. So it is important to
study quantum field theory in de Sitter background.



Introduction and Motivations

I It has been known for some time that perturbatively
calculated correlation functions of certain quantum field
theories set in an expanding background grow secularly
(infinitely) with time.

I This growth can lead to a breakdown of the perturbation
theory past a certain point in time.

I The renormalization group method is very effective in
quantum field theory.

I Dynamical renormalization group permits to improve
perturbative solutions of some complicated differential
equations.

I The attempts to apply the dynamical renormalization
group to the treatment of secular effects in de Sitter
spacetime did not reproduce known results.



Introduction and Motivations

I In this work we considered a massless scalar field with
quartic self-interaction in de Sitter spacetime and
developed a semi-heuristic method for taking the
late-time limit of a series of secularly growing terms
obtained from quantum perturbative calculations.

I We compared our results with the well-known stochastic
approach (Starobinsky, 1986, Starobinsky and Yokoyama,
1994).



De Sitter Space in Flat Coordinates

We consider the de Sitter spacetime represented as an
expanding spatially flat homogeneous and isotropic universe
with the following metric

ds2 = dt2 − a2(t)(dx2 + dy 2 + dz2) ,

where the scale factor a(t) is

a(t) = eHt ,−∞ < t <∞,

and H is the Hubble constant that characterizes the rate of
expansion.



If we introduce a conformal time coordinate, given by
η(t) ≡

∫
dt a−1(t)

ds2 = a2(η)(dη2 − dx2 − dy 2 − dz2),

a(η) = − 1

Hη
, −∞ < η < 0.

Physical distances: `phys = a(η)` = −`/(Hη).

Physical energy or momentum: kphys = k/a(η) = −kHη.



Massless Scalar Field in de Sitter:
Equation of Motion, Basis Functions and Quantization

S =

∫
d4x
√
−g
(

1

2
gµν∂µφ∂νφ− V (φ)

)

We consider

V (φ) =
λ

4
φ4, λ� 1.

The equation of motion for the free theory (λ = 0) is

φ̈(~x , t) + 3Hφ̇(~x , t)− ∇
2

a2
φ(~x , t) = 0 .

Transitioning to conformal time and making Fourier
transformation

φ(~x , t) =

∫
d3~k

(2π)3
φk(η)e i

~k·~x ,

φ′′k(η)− 2

η
φ′k(η) + k2φk(η) = 0, k = |~k |.



Equation of Motion, Basis Functions and Quantization

General solution of the Klein-Gordon equation

φk(η) = C1(1 + ikη)e−ikη + C2(1− ikη)e ikη .

Now, φ can be decomposed as

φ(~x , t) =

∫
d3~k

(2π)3

{
uk(η)e i

~k·~xa~k + u∗k(η)e−i
~k·~xa†~k

}
,

where
a~k |0〉 = 0,

and
uk(η) ∼ φk(η).

How to choose C1 and C2 ?



For modes with large momentum,

kphys = (−kHη)� H ←→ short physical wavelength,

the theory should behave like in flat spacetime, hence

uk(η) =
iH√
2k3

(1 + ikη)e−ikη .

Such a choice is called the Bunch-Davies vacuum.



Expectation Values of the Free Theory (λ = 0) and Secular
Growth

〈0|φ(~x , t)φ(~y , t)|0〉 =

∫
d3~k

(2π)3
uk(η)u∗k(η)e i

~k·(~x−~y)

=
H2

2

∫
d3~k

(2π)3
(1 + k2η2)

k3
e i
~k·(~x−~y) . (1)

We would like to find the late-time behavior of the
long-wavelength part of (1), i.e., the part coming from the
modes with physical momenta much less than the Hubble
scale, −kHη � H .



In the case of coinciding spatial points (~x = ~y)

〈0|φ2(~x , t)|0〉L =
H2

4π2

∫ −1/η

κ

dk

k
(1 + k2η2)

= − H2

4π2

(
ln (−κη)− 1

2
+
κ2η2

2

)
, (2)

where we introduced an infrared cutoff κ for the comoving
momentum k , since the integral is divergent at k = 0.



Expectation Values of the Free Theory (λ = 0) and Secular
Growth

For t →∞ (i.e., −κη � 1), the first term in (2) dominates,
so in the late-time limit we have

〈0|φ2(~x , t)|0〉L =
H3

4π2
(t − t0) ,

where t0 ≡ (1/H) ln(κ/H); thus, it grows linearly with time.

I This time-dependence is a sign of breakdown of de Sitter
invariance.

I It was shown by B. Allen (1985)1, and subsequently by B.
Allen and A. Folacci (1987)2 that no de Sitter invariant
state exists for a massless scalar field.

1B. Allen, Phys. Rev. D 32 (1985), 3136
2B. Allen and A. Folacci, Phys. Rev. D 35, 3771 (1987)



Expectation Values and Secular Growth

In the presence of quartic interaction, V (φ) = λ
4
φ4, the

leading late-time behavior of 〈φ2(~x , t)〉L can be calculated
using perturbation theory and the “in-in” (Schwinger -
Keldysh) formalism

〈φ2(~x , t)〉L =
H3

4π2
t − λ H5

24π4
t3 + λ2

H7

80π6
t5 +O(λ3). (3)

I The perturbative calculation of the long-wavelength part
of 〈φ2(~x , t)〉 gives a series with terms that behave like
λn(Ht)2n+1.

I When Ht > 1/
√
λ, the perturbation theory breaks down,

so it can’t make reliable predictions at late times.



I It is disturbing that expectation values like (3) do not
approach a finite limit, since they can enter in the
expressions for energy density and observable correlation
functions.

I There are also subdominant secular terms present: they
are suppressed by additional powers of λ with respect to
the leading terms, so we ignore them here.



Autonomous Equations

I We would like to calculate the expectation value of a
product of field operators.

I We do not have the dynamical equation governing this
function, but we have some information obtained by
perturbative methods. For λ� 1,

f (t) = At − λBt3 +O(λ2) , (4)

where A and B are some known positive constants.
I As t grows, the perturbation theory breaks down and the

expansion (4) can no longer be trusted.
I From (4), f (t)→∞ as t →∞.
I But we can guess from physical considerations that f (t)

should be finite.
I How can we model the correct behavior and follow what

happens at late times?



Autonomous Equations

Our proposal: construct a simple autonomous first-order
differential equation

df

dt
= F [f (t)]

that produces the first two terms of the expression (4) by
iterations. Denote y(t) ≡ A(t − t0), then
f (t) = At − λBt3 +O(λ2)→

f (t) = y(t)− λ B

A3
[y(t)]3 +O(λ2) . (5)

Differentiating (5),

df

dt
= A− λ3B

A2
y 2 +O(λ2) .



Within the given accuracy, y 2 on the right side of this
equation can be replaced by f 2,

df

dt
= A− λ3B

A2
f 2. (6)

The iterative solution of (6) gives us the original expansion.



Autonomous Equations: λ-order

But it’s also possible to solve the equation

df

dt
= A− λ3B

A2
f 2

explicitly. The solution, with initial condition f (0) = 0, is

f (t) =

√
A3

3λB
tanh

[√
3λB

A
(t)

]
.

The remarkable feature of this expression is that it is regular
for all values of t, and when t →∞, one has

f (t)→
√

A3

3λB
.



Autonomous Equations: λ2-order

In principle, this procedure can be generalized for the situation
when we have more than two terms coming from perturbation
theory

f (t) = At − λBt3 + λ2Ct5 +O(λ3) .

The corresponding autonomous equation is

df

dt
= A− λ3B

A2
f 2 + λ2

6B2

A5

(
5AC

6B2
− 1

)
f 4 . (7)

This equation is also integrable and we can obtain its implicit
solution t = t(f ). In general it is not possible to find the
explicit form of f (t). But in some cases we can obtain the
solution of Eq. (7) in the form of perturbative expansion in a
small parameter.



Autonomous Equations: λ2-order

The corresponding autonomous equation is

df

dt
= A− λ3B

A2
f 2 + λ2

6B2

A5

(
5AC

6B2
− 1

)
f 4 .

If 5AC
6B2 − 1 = 0, we are back to the previous equation and its

solution. This is not surprising, since

f (t) =

√
A3

3λB
tanh

[√
3λB

A
(t)

]

→ f (t) = At − λBt3 + λ2
6B2

5A
t5 .



Autonomous Equations: λ2-order

Let us denote ε ≡ 5AC
6B2 − 1, and rescale F (t) ≡

√
3λB
A3 f (t).

Then

df

dt
= A− λ3B

A2
f 2 + λ2

6B2

A5

(
5AC

6B2
− 1

)
f 4 .

→ dF

dt
=

√
3λB

A

(
1− F 2 +

2

3
εF 4

)
. (8)

If ε is small, we can look for the solution of this equation in
the form of the perturbative expansion

F (t) = F0(t) + εF1(t) +O(ε2) .



Autonomous Equations: λ2-order

To first-order in ε, the solution is

f (t) =
(

1 +
ε

3

)√ A3

3λB
tanh

[√
3λB

A
t

]

+

ε

{
2
3

√
A3

3λB
tanh

[√
3λB
A
t
]
− At

}

cosh2
[√

3λB
A
t
] ,

I Expansion in small λ reproduces the original series

f (t) = At − λBt3 + λ2Ct5 +O(λ3) .

I As t →∞, it approaches a finite limit

f (t)→
√

A3

3λB

(
1 +

ε

3

)√ A3

3λB

(
2

3
+

5

18

AC

B2

)
.



Back to de Sitter

Recall that

〈φ2(~x , t)〉L =
H3

4π2
t − λ H5

24π4
t3 + λ2

H7

80π6
t5 +O(λ3) (9)

We can identify the expression (9) with the general expression
for the function f (t). The coefficients A,B and C for
f (t) = 〈φ2(~x , t)〉L are

A =
H3

4π2
, B =

H5

24π4
, C =

H7

80π6
.

Solutions of the autonomous equations:

I λ: 〈φ2(~x , t)〉L = H2
√
8λπ

tanh

[√
H2λ
2π2 t

]
→ H2
√
8λπ

.

I λ2: 〈φ2(~x , t)〉L =

7
6

H2
√
8λπ

tanh

[√
H2λ
2π2 t

]
+

1
3

H2
√
8λπ

tanh

[√
H2λ
2π2 t

]
− H3

8π2 t

cosh2
[√

H2λ
2π2 t

] → 7
6

H2
√
8λπ

.



Comparison with the Stochastic Approach

The stochastic approach argues3 that the behavior of the
long-wave part of the quantum field φ(~x , t) can be modelled
by an auxiliary classical stochastic variable ϕ with a probability
distribution ρ(ϕ, t) that satisfies the Fokker-Planck equation

∂ρ

∂t
=

H3

8π2

∂2ρ

∂ϕ2
+

1

3H

∂

∂ϕ

(
∂V

∂ϕ
ρ(t, ϕ)

)
. (10)

→ 〈ϕn〉 = 〈φn(~x , t)〉L , 〈ϕn〉 =

∫ ∞

−∞
dϕϕnρ(ϕ, t)

A well-known case that is described by a Fokker-Planck
equation is the Brownian motion of particles.

3A. A. Starobinsky and J. Yokoyama, Phys. Rev. D 50, 6357 (1994)



Comparison with the Stochastic Approach

At late times any solution of the equation (10) approaches the
static solution

ρ(ϕ) =

(
32π2λ

3

) 1
4 1

Γ
(
1
4

)
H

exp

(
−2π2λϕ4

3H4

)

→ 〈ϕ2〉 =

√
3

2π2

Γ
(
3
4

)

Γ
(
1
4

) H
2

√
λ
.

Recall the result obtained from autonomous equations
〈φ2〉L = 7

6
H2
√
8λπ

,

→ 〈ϕ
2〉 − 〈φ2〉L
〈ϕ2〉

≈ 0.0036 = 0.36% .

We also compared the results for the product of four fields

〈ϕ4〉 − 〈φ4〉L
〈ϕ4〉

≈ 0.0905 = 9.05% .



How can one calculate the perturbative series for the
correlators ?

There are two methods:

Schwinger–Keldysh technique.

Yang–Feldman equation.



Schwinger–Keldysh technique

I Schwinger-Keldysh or “in-in” or “closed time path”
formalism serves for the calculations of expectation values
of operators when only the initial state of the system is
given.

I In contrast to the “in-out” formalism there are four types
of the propagators and two types of vertices,
characterizing the quantum fields on the way forward in
time and “back in time”.

I After some calculations one remains with the integrals
including Wightman functions and theta-functions.

I Diagrams that correspond to these integrals look similar
to Feynman diagrams.
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Figure: One-loop and counterterm diagrams.
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Figure: Diagram with two independent loops and and the
counterterm diagrams.
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Figure: Snowman diagram and the corresponding counterterm
diagram with the mass counterterm insertion in its loop.
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Figure: Sunset diagram.
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Figure: Connected diagram for the four-point function - cross.



Yang-Feldman equation for the long-wavelength part of the
scalar field on de Sitter background

Yang-Feldman equation, connecting the interacting and
non-interacting quantum fields was suggested in
C. N. Yang and D. Feldman, The S Matrix in the Heisenberg
Representation, Phys. Rev. 79, 972 (1950).
Its application to a long-wave (infrared) part of a scalar field
was suggested in
R. P. Woodard, Generalizing Starobinskii’s Formalism to
Yukawa Theory and to Scalar QED, J. Phys. Conf. Ser. 68,
012032 (2007).
This application is described in detail in
V. K. Onemli, Vacuum Fluctuations of a Scalar Field during
Inflation: Quantum versus Stochastic Analysis, Phys. Rev. D
91, 103537 (2015).
It is a very efficient method for calculation of correlators!



There are two kinds of the infrared reduced scalar fields: the
free field φ0(~x , t), which satisfies the Klein-Gordon equation in
the absence of the self-interaction, and the full infrared
reduced scalar field φ(~x , t). These two fields are connected by
the equation

φ(t, ~x) = φ0(t, ~x)

−
∫ t

0

dt ′a3(t ′)

∫
d3x G (t, ~x ; t ′~x ′)

V ′(φ)

1 + δZ
.

Green’s function G satisfies the retarded boundary conditions,
Z is the renormalization constant of the scalar field and the
potential V includes the mass and coupling constant
counterterms. Simple considerations show that the
counterterms do not give contributions to the leading infrared
part of the correlators.



The leading infrared part of the retarded Green’s function has
the form

G (t, ~x ; t ′~x ′) =
1

3H
θ(t − t ′)δ3(~x − ~x ′)

[
1

a3(t ′)
− 1

a3(t)

]
.

Then

φ(t, ~x) = φ0(t, ~x)− 1

3H

∫ t

0

dt ′V ′(φ(t ′, ~x)

= φ0(t, ~x)− λ

3H

∫ t

0

dt ′φ3(t ′, ~x).

Solving this equation by iterations, we obtain (up to the order
λ2):



φ(t) = φ0(t)− λ

3H

∫ t

0

dt ′φ3
0(t ′)

+
λ2

3H2

∫ t

0

dt ′φ2
0(t ′)

∫ t′

0

dt ′′φ3
0(t ′′).

Substituting this expression into the expressions for the
correlators of the scalar field, we reduce their calculations to
the application of some analogue of the Wick theorem and to
the calculations of the integrals, where integrands include only
free two-point correlators.

〈φ0(t, ~x)φ0(t ′, ~x)〉 =
H2

4π2
ln(a(t ′)) =

H3t ′

4π2
,

where
t ′ ≤ t,



For example:

〈φ2(t)〉λ = − λ

3H

[
〈φ0(t)

∫ t

0

dt ′φ3
0(t ′)〉+ 〈

∫ t

0

dt ′φ3
0(t ′)φ0(t)〉

]

= − λ

3H

[
3

∫ t

0

dt ′〈φ0(t)φ0(t ′)〉〈φ2
0(t ′)〉

+3

∫ t

0

dt ′〈φ2
0(t ′)〉〈φ0(t ′)φ0(t)〉

]
.

Then

〈φ2(t)〉λ = −2λ

H

(
H2

4π2

)2 ∫ t

0

dt ′H2t ′2 = − λH
5

24π4
t3,

which coincides with the known result.



Conclusions

I The quantum field theory on the de Sitter background is
very interesting.

I One can generalize the developed methods to the case of
a massive scalar field (work in progress).

I It would be interesting but more difficult to consider
similar problems on more general backgrounds.


