# Non-singular cosmological models with strong gravity in the past.

#### Valery Rubakov

Inst. Nuclear Research, Russian Acad. Sci.

Dept. of Particle Physics and Cosmology Physics Faculty, Moscow State University





+ Yu. Ageeva, P. Petrov

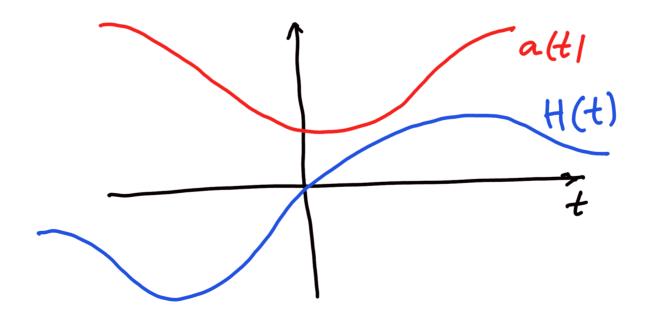
## Introduction

Focus of this talk: homogeneous isotropic, spatially flat Universe.

Non-singular models:

#### Bounce

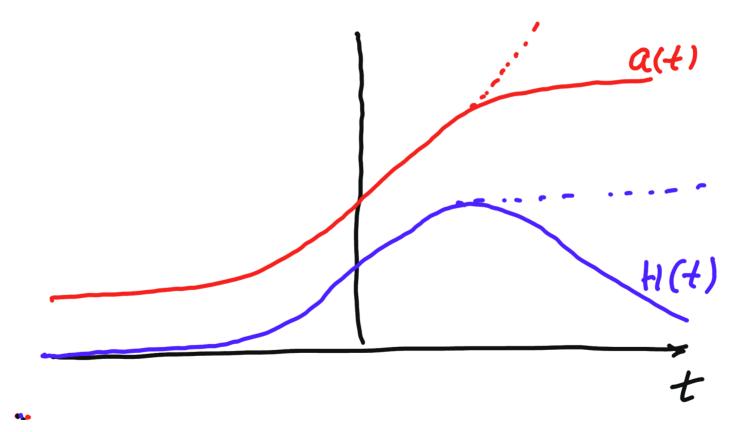
Start from slowly contracting Universe (H < 0), then contraction rate increases, energy density builds up, at some moment of time contraction terminates (bounce), Universe starts to expand (H > 0). At some point conventional hot epoch (or inflation) begins.



#### Genesis

Creminelli, Nicolis, Trincherini' 2010

Start from Minkowski, empty space (H = 0), then energy density builds up, Universe starts to expand (H > 0), expansion accelerates. At some point conventional hot epoch (or inflation) begins.



## Motivation

- Curiuosity. Always good to have alternatives even to compelling scenarios like inflation.
- No initial singularity.
- Horizon, curvature problems "solved" by assumption about initial state.
- Very long prehistory without matter energy density ⇒ useful for relaxing the cosmological constant

V.R. '99; Mukohyama, Randall '2003

#### DRAWBACK

Generation of (nearly) flat power power spectrum of scalar perturbations not so automatic as compared to in inflation Obstacle in classical GR (if spatial curvature negligible): both bounce and Genesis need exotic matter which violates the Null Energy Condition,

i.e. has  $p < -\rho$ ; where  $\rho = T_0^0$ , energy density;  $p = T_1^1 = T_2^2 = T_s^3$ , effective pressure.

■ If the NEC holds: a combination of Einstein equations (spatially flat):

$$\frac{dH}{dt} = -4\pi G(\rho + p)$$

Hubble parameter always decreases. No bounce, no Genesis.

Penrose theorem for expanding Universe: there was a singularity in the past,  $H = \infty$ .

## NEC is not violated in conventional field theories with Lagrangians involving first derivatives only.

Dubovsky, Gregoire, Nicolis, Rattazzi' 2006 Buniy, Hsu, Murray' 2006

NEC-violation in theories of this sort:

- Either ghosts: both kinetic an gradient terms have wrong sign. Hyperbolic equation of motion, but negative energies  $\iff$  ghosts:  $E = -\sqrt{p^2 + m^2}$  Catastrophic vacuum instability
- ullet Or gradient instabilities: only gradient term has wrong sign. Elliptic equation of motion  $\Longrightarrow$  gradient instability

$$E^2 = -(p^2 + m^2) \implies \delta\pi \propto e^{|E|t}$$

Also catastrophic

## Horndeski and $p < -\rho$

Twist: scalar-tensor theories with second derivatives in the Lagrangian.

Danger: higher order equations of motion  $\Longrightarrow$  extra degrees of freedom = Ostrogradsky ghosts

#### Not necessarily!

- Emphasis of this talk: Horndeski Horndeski' 1974 aka Euler hierarchies, aka generalized Galileons, aka KGB, aka generalized Fab Four
  - Second derivatives in Lagrangian, second order field equations
  - Simplest case: Creminelli, Nicolis, Trincherini' 10, Deffayet, Pujolas, Sawicki, Vikman' 10, Kobayashi, Yamaguchi, Yokoyama' 10

$$L = -\frac{1}{16\pi G}R + F(\pi, X) - K(\pi, X) \square \pi$$

where again  $X = (\partial \pi)^2$ .

• Explicit examples of stable NEC-violation.

## No-Go

However, things are not so simple.

"Complete cosmologies":  $-\infty < t < +\infty$ 

Explicit examples of Genesis (or bounce) with Horndeski: either Big Rip singularity in future,  $\pi = \infty$ ,  $H = \infty$  at  $t < \infty$ 

Creminelli, Nicolis, Trincherini '2010

or gradient/ghost instability

Cai, Easson, Brandenberger '2012; Koehn, Lehners, Ovrut '2014; Pirtskhalava, Santoni, Trincherini, Uttayarat '2014; Qiu, Wang '2015; Kobayashi, Yamaguchi, Yokoyama '2015; Sosnovikov '2015

Can one avoid instability?

No-go in Horndeski! Libanov, Mironov, V.R.' 16; Kobayashi' 16

#### General Horndeski theory

Require: both "Einstein" equations and  $\pi$ -field equation second order

Four arbitrary functions of  $\pi$  and  $X: F \equiv G_2; K \equiv G_3; G_4; G_5$ 

Horndeski' 1974; Deffayet, Esposito-Farese, Vikman' 09

$$\begin{split} L = & F(\pi, X) - K(\pi, X) \square \pi \\ & + G_4(\pi, X)R + G_{4,X} \cdot \left[ (\square \pi)^2 - (\nabla_{\mu} \nabla_{\nu} \pi)^2 \right] \\ & + G_5 \cdot G^{\mu\nu} \nabla_{\mu} \nabla_{\nu} \pi - \frac{1}{6} G_{5,X} \cdot \left[ (\square \pi)^3 - 3 \square \pi \cdot (\nabla_{\mu} \nabla_{\nu} \pi)^2 + 2(\nabla_{\mu} \nabla_{\nu} \pi)^3 \right] \end{split}$$

- Modified gravity (scalar-tensor).
- NB: always in Jordan frame.

No-go theorem for Genesis in Horndeski: gradient/ghost instability at some stage (which may be quite late)

Libanov, Mironov, V.R.' 16; Kobayashi' 16

Choose unitary gauge  $\delta \pi = 0$ .

$$ds^{2} = N^{2}dt^{2} - a^{2}e^{2\zeta}(\delta_{ij} + h_{ij} + \frac{1}{2}h_{ik}h_{kj})(N^{i}dt + dx^{i})(N^{j}dt + dx^{j})$$

Dynamical variables: transverse traceless  $h_{ij}$  and  $\zeta$  (lapse  $\delta N$  and shift  $N^i$  are not dynamical, as usual).

Upon solving for constraints, find quadratic Lagrangians for perturbations

$$L_{S} = \mathscr{G}_{\mathscr{S}}\dot{\zeta}^{2} - a^{-2}\mathscr{F}_{\mathscr{S}}(\partial_{i}\zeta)^{2}, \quad L_{T} = \mathscr{G}_{\mathscr{T}}\dot{h_{ij}}^{2} - a^{-2}\mathscr{F}_{\mathscr{T}}(\partial_{k}h_{ij})^{2}$$

NB:  $\mathscr{G}_{\mathscr{T}}$ ,  $\mathscr{F}_{\mathscr{T}} = \text{effective } M_{Pl}^2$ .

Stable background  $\iff \mathscr{G}_{\mathscr{T}}, \mathscr{F}_{\mathscr{T}}, \mathscr{G}_{\mathscr{S}}, \mathscr{F}_{\mathscr{S}} > 0.$ 

To simplify formulas (but not outcome):  $G_5 = 0$ . Tensor sector:

$$\mathscr{G}_{\mathscr{T}} = 2G_4 - 4G_{4X}X,$$
$$\mathscr{F}_{\mathscr{T}} = 2G_4$$

#### Scalar sector:

$$\mathcal{G}_{\mathscr{S}} = \frac{\Sigma \mathcal{G}_{\mathscr{T}}^{2}}{\Theta^{2}} + 3\mathcal{G}_{\mathscr{T}},$$

$$\mathcal{F}_{\mathscr{S}} = \frac{1}{a} \frac{d\xi}{dt} - \mathcal{F}_{\mathscr{T}},$$

$$\xi = \frac{a\mathcal{G}_{\mathscr{T}}^{2}}{\Theta}.$$

Where

$$\Theta = -K_X X \dot{\pi} + 2G_4 H - 8HG_{4X} X - 8HG_{4XX} X^2 + G_{4\pi} \dot{\pi} + 2G_{4\pi X} X \dot{\pi}$$

$$\Sigma = F_X X + 2F_{XX} X^2 + 12HK_X X \dot{\pi} + 6HK_{XX} X^2 \dot{\pi} - K_{\pi} X - K_{\pi X} X^2$$

$$-6H^2 G_4 + 42H^2 G_{4X} X + 96H^2 G_{4XX} X^2 + 24H^2 G_{4XXX} X^3 - 6HG_{4\pi} \dot{\pi}$$

$$-30HG_{4\pi X} X \dot{\pi} - 12HG_{4\pi XX} X^2 \dot{\pi}$$

Key relation (by explicit calculation in general Horndeski)

$$\frac{d\xi}{dt} = a(t)(\mathscr{F}_{\mathscr{S}} + \mathscr{F}_{\mathscr{T}})$$

$$\xi = -\frac{a(t)\mathscr{G}_{\mathscr{T}}^{2}(t)}{\Theta(t)}$$

where  $\Theta(t) = -2HG_4 + \dot{\pi}XK_X + \dots$ , a complicated expression.

Main property:  $\xi$  never crosses zero ( $\Theta = \infty$  is a singularity).

$$\xi(t_f) - \xi(t_i) = \int_{t_i}^{t_f} dt \ a(t) (\mathscr{F}_{\mathscr{S}} + \mathscr{F}_{\mathscr{T}})$$

Impossible for  $\mathscr{F}_{\mathscr{S}} > 0$ ,  $\mathscr{F}_{\mathscr{T}} > 0$ , and

$$\int_{-\infty}^{t_f} dt \ a(t)(\mathscr{F}_{\mathscr{S}} + \mathscr{F}_{\mathscr{T}}) = \infty \ , \quad \int_{t_i}^{+\infty} dt \ a(t)(\mathscr{F}_{\mathscr{S}} + \mathscr{F}_{\mathscr{T}}) = \infty$$

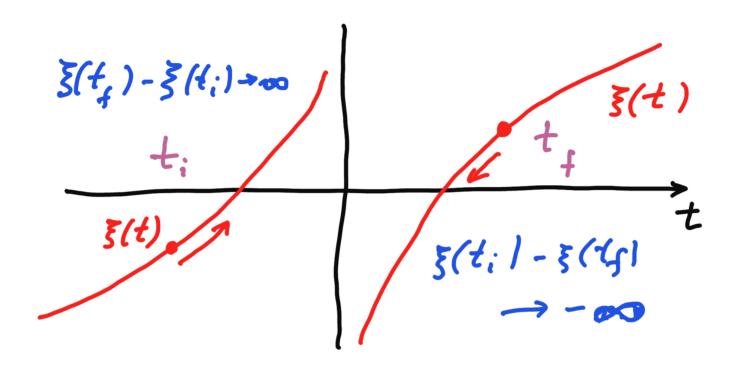
Recall that  $a(t) \to \infty/\text{const}$  as  $t \to -\infty$  and  $a(t) \to \infty$  as  $t \to +\infty$  for bounce/Genesis No-go

$$\xi(t) - \xi(0) = \int_0^t dt \ a(t)(\mathscr{F}_{\mathscr{S}} + \mathscr{F}_{\mathscr{T}}) \implies \xi(t) \to +\infty \text{ as } t \to +\infty$$

$$\xi(0) - \xi(t) = \int_{t}^{0} dt \ a(t)(\mathscr{F}_{\mathscr{S}} + \mathscr{F}_{\mathscr{T}}) \implies \xi(t) \to -\infty \text{ as } t \to -\infty$$

Thus,  $\xi(t)$  crosses zero, QED.

Even if  $\Theta = 0$  at some time  $\iff \xi = \infty$ , there is necessarily  $\xi$ -crossing:



Side remark:  $\Theta$ -crossing  $\Theta = 0$  at some t is not a problem by itself.  $\mathscr{F}_{\mathscr{I}}, \mathscr{G}_{\mathscr{I}} = \infty$ , but solutions for  $\zeta$  remain finite. Also: no singularity in equations in Newtonian gauge

- Argument intact in presence of extra matter (obeying NEC) which interacts with Horndeski sector only gravitationally
- Extends to Horndeski theory with multiple (Horndeski or conventional) scalars

Kolevatov, Mironov '2016 Akama, Kobayashi '2017

## Ways out

Go beyond Horndeski theory (not this talk)

Effective field theory: Cai et.al.' 2016, Creminelli et.al.'2016 Covariant formalism: Kolevatov et.al.' 2017, Cai, Piao' 2017; Complete cosmologies: Mironov, V.R. Volkova' 2018, 2019

Has its own problems.

Within Horndeski theory, classical stability (absence of gradient instabilities and ghosts) requires

$$\int_{-\infty}^{t} dt \ a(t)(\mathscr{F}_{\mathscr{S}} + \mathscr{F}_{\mathscr{T}}) < \infty.$$

#### **OPTIONS:**

• Option 1. Start from de Sitter rather than Minkowski,  $a(t) = e^{H_i t}$ ,  $H_i > 0$ .

Pirtskhalava, Santoni, Trincherini, Uttayarat '2014

Claim: even small  $H_i$  does the job at expence of fine-tuning (?). Interesting, albeit not quite Genesis.

• Option 2: modified Genesis. Power law behavior with  $a(t) \to 0$  as  $t \to -\infty$ , so that

$$\int_{-\infty}^{t} a(t) \ dt < \infty$$

Say

$$a = \frac{1}{|t|^{\alpha}}, \quad \alpha > 1$$

Hubble parameter and its derivatives vanish as  $t \to -\infty$ .

Libanov, Mironov, V.R.' 16

Naively: space in nearly Minkowskian as  $t \to -\infty$ .

Does not work: past geodesic incompleteness.

[Recall: we are in Jordan frame.]

## Strong gravity in the past

Yet another way out, still in Horndeski.

Example: bounce,  $a(t) \rightarrow \infty$  as  $t \rightarrow -\infty$ 

$$\mathscr{G}_{\mathscr{T}}, \mathscr{F}_{\mathscr{T}}, \mathscr{G}_{\mathscr{S}}, \mathscr{F}_{\mathscr{S}} \to 0 \text{ as } t \to -\infty, \text{ so that}$$

Kobayashi '2016; Ijjas, Steinhardt '2016

$$\int_{-\infty}^{l_f} dt \ a(\mathscr{F}_{\mathscr{S}} + \mathscr{F}_{\mathscr{T}}) < \infty$$

No-go theorem does not work.

But gravity tricky as  $t \to -\infty$ : effective Planck mass vanishes.

Strong coupling?

Examples:

$$\mathscr{G}_{\mathscr{T}}, \mathscr{F}_{\mathscr{T}}, \mathscr{G}_{\mathscr{S}}, \mathscr{F}_{\mathscr{S}} = \frac{1}{(-t)^{2\mu}} \quad \text{as} \quad t \to -\infty.$$

Can one trust classical field theory treatment of cosmological evolution?

Energy scale of classical evolution  $E_{class} = H$ ,  $\dot{H}/H = (-t)^{-1} \rightarrow 0$ 

How does it compare with strong coupling scales  $E_{strong}$  inferred from interactions of  $\zeta$  and  $h_{ij}$ ?

Classical treatment of evolution legitimate for  $E_{strong} >> E_{class}$  as  $t \to -\infty$ .

Example (part of the story): tensor sector up to cubic terms. At given moment of time rescale spatial coordinates to set a=1 (equivalently, work in terms of <u>physical</u> spatial momenta  $\vec{p} = \vec{k}/a$ ). Then (note that  $\mathscr{G}_{\mathscr{T}} = \mathscr{F}_{\mathscr{T}}$ )

$$S_{hh}^{(2,3)} = \int d^4x \left( \mathscr{F}_{\mathscr{T}} \dot{h_{ij}}^2 - \mathscr{F}_{\mathscr{T}} (\partial_k h_{ij})^2 + \frac{\mathscr{F}_{\mathscr{T}}}{4} \left( h_{ik} h_{jl} - \frac{1}{2} h_{ij} h_{kl} \right) \partial_k \partial_l h_{ij} \right)$$

To figure out strong coupling energy scale, canonically normalize

$$h_{ij} = h_{ij}^{(c)} / \sqrt{\mathscr{F}_{\mathscr{T}}}$$

$$S_{hh}^{(2,3)} = \int d^4x \left( h_{ij}^{(c)^2} - (\partial_k h_{ij}^{(c)})^2 + \frac{1}{4\sqrt{\mathscr{F}_{\mathscr{T}}}} \left( h_{ik}^{(c)} h_{jl}^{(c)} - \frac{1}{2} h_{ij}^{(c)} h_{kl}^{(c)} \right) \partial_k \partial_l h_{ij}^{(c)} \right)$$

Dimension-5 operator "suppressed" by  $1/\sqrt{\mathcal{F}_{\mathcal{T}}} \iff$  quantum strong coupling energy scale  $E_{strong} = \sqrt{\mathcal{F}_{\mathcal{T}}} \propto (-t)^{-\mu}$ 

$$E_{strong} \to 0 \text{ as } t \to -\infty$$
, but  $E_{strong} \gg E_{class} = (-t)^{-1}$  for  $\mu < 1$ .

Healthy early bounce stage within classcal field theory at weak coupling.

• This extends to scalar plus tensor sectors and all orders in perturbation theory.

- "Calculate" action for  $\delta N$ ,  $N^i$ ,  $h_{ij}$ ,  $\zeta$  order by order in perturbation theory
- Solve constraint equations for  $\delta N$ ,  $N^i$ , plug back  $\Longrightarrow$  obtain unconstrained action for  $h_{ij}$ ,  $\zeta$
- Canonically normalize  $h_{ij}^{(c)} = t^{\mu} h_{ij}, \; \zeta^{(c)} = t^{\mu} \zeta$

Structure of interaction term in Lagrangian for perturbations

$$(\sqrt{-g}\mathscr{L})_{(pq)} = \sum_{l} \Lambda_{l}(t) \cdot (\partial)^{c_{l}} \cdot [\zeta^{(c)}]^{p} \cdot [h_{ij}^{(c)}]^{q}$$

Strong coupling scale "on dimensional grounds"

$$E_l(t) = \left[\Lambda_l(t)\right]^{-\frac{1}{c_l + p + q - 4}}$$

#### Outcome:

Lowest strong coupling energy scale comes from above dimension-5 operator in tensor sector and dimension-6 operators in scalar sector, e.g.

$$(-t)^{1-2\mu} \cdot \dot{\zeta}(\partial_i \zeta)^2 = (-t)^{1+\mu} \cdot \dot{\zeta}^{(c)}(\partial_i \zeta^{(c)})^2$$

This gives

$$E_{strong} = (-t)^{-\frac{1+\mu}{2}}$$

which is higher than  $E_{class} = t^{-1}$  again for  $\mu < 1$ .

In a large region of parameter space, classical field theory treatment of cosmological evolution is legitimate, even though "effective Planck masses squared"  $\mathcal{G}_{\mathcal{T}}, \mathcal{F}_{\mathcal{T}}, \mathcal{G}_{\mathcal{G}}, \mathcal{F}_{\mathcal{G}} \to 0$  as  $t \to -\infty$ . Viable scenario.

Overall picture: Universe starts at very low quantum gravity scale  $E_{strong} \propto |t|^{-\alpha}$  but expands so slowly that  $E_{class} \ll E_{strong}$ . Standard Model scales are above  $E_{strong}$ . Gravity is the strongest force.

#### Similar construction works for Genesis

NB. Often said: geodesic incompleteness of tensor/scalar modes for

$$\int_{-\infty}^{t} dt \ a(t) \ \mathscr{G}_{\mathscr{T},\mathscr{S}} < \infty$$

But: geodesic incompleteness is not well defined notion for massless excitations. Upon field redefinition to canonically normalized field

$$L_T = \mathscr{G}_{\mathscr{T}}\dot{h}^2 - a^{-2}\mathscr{F}_{\mathscr{T}}(\partial_k h)^2 \Longrightarrow \dot{h}_{(c)}^2 - a^{-2}(\partial_k h_{(c)})^2 + \text{non-derivative terms}$$

i.e.  $\mathscr{G}_{\mathscr{T}} \Longrightarrow 1$ .

This observation does not apply to masive particles: proper time is measured in units of  $m^{-1}$ , where m becomes time-dependent after field redefinition.

## Complete cosmologies

## Intelligent design: proof by example Dubbed "Inverse method" by Ijjas, Steinhardt' 2016

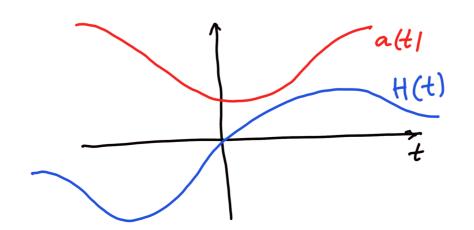
• Choose background  $\pi(t) = t$ , no loss of generality (field redefinition).

Then 
$$X = (\partial \pi)^2 = 1$$
.

Field equations and stability conditions involve Lagrangian functions F, K,  $G_4$  and their X-derivatives  $F_X$ ,  $F_{XX}$ , etc, all at  $\pi(t) = t$ , X = 1.

These are yet undetermined independent functions of time  $f_0(t) = F(\pi(t), X = 1), f_1(t) = F_X(\pi(t), X = 1), \text{ etc.}$ 

• Choose your favorite H(t).



In particular, theory at late times becomes GR + conventional massless scalar field  $\phi = (2/3)^{1/2} \log \pi$  ("kination"), i.e., at late times  $\phi = \sqrt{\frac{2}{3}} \log t$ ,  $H = \frac{1}{3t}$  and

$$L = -\frac{1}{2}R + \frac{1}{3}\left(\frac{\partial\pi}{\pi}\right)^2 \iff G_4 = -\frac{1}{2}, \quad F(\pi, X) = \frac{1}{3}\frac{X}{\pi^2}, \quad K = F_4 = 0.$$

- Cook up Lagrangian functions in such a way that
  - Field equations are satisfied
  - Stability conditions are satisfied at all times
  - Classical field theory description of background is reliable at all times, including  $t \to -\infty$

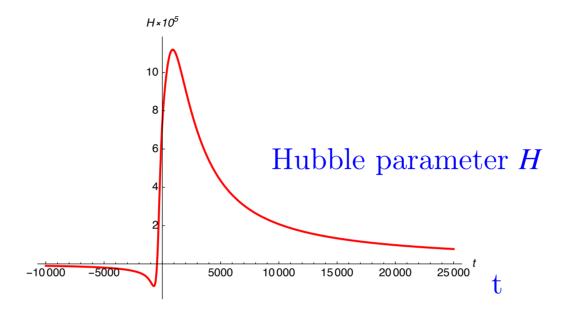
All this can be done for bounce (and also Genesis)

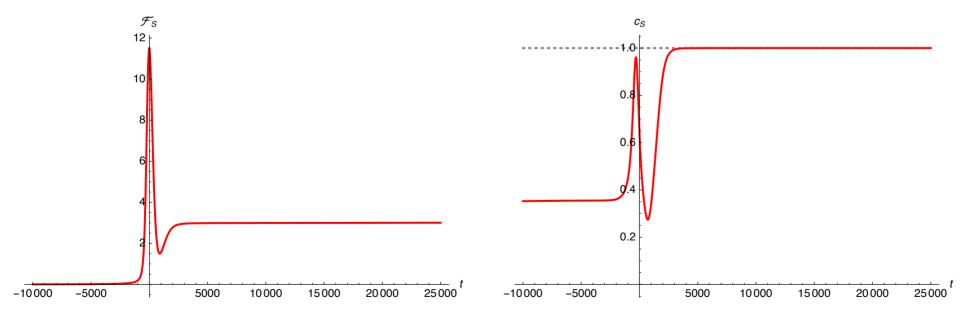
Ageeva, Petrov, V.R.' 2021

Moreover, one can design a model in such a way that

● Tensor and scalar perturbations are subluminal at all times (or luminal, if one wishes so)

## Bounce to kination

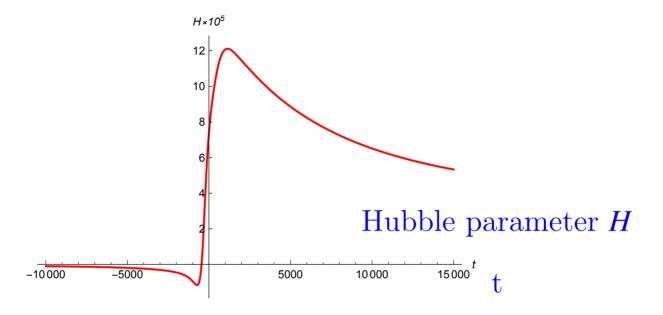


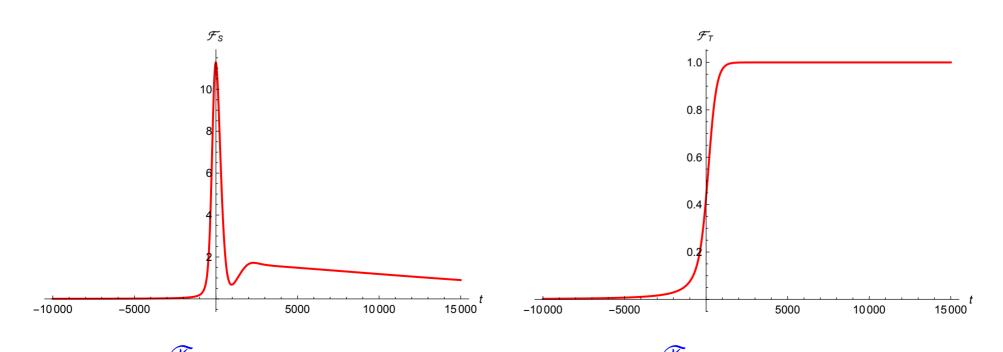




speed of scalar prturbations

## Bounce to inflation





## To conclude

- Constructing complete  $(-\infty < t < +\infty)$  non-singular cosmology (bounce, Genesis) is difficult.
  - Within scalar-tensor gravity: non-trivial kinetic/gradient terms
  - bounce epoch, early Genesis per se not so prolematic
  - however, almost all complete cosmologies plagued with instability ("No-go")
- Possible way out (not the only one): strong gravity in the past; effective Planck mass tends to 0 as  $t \to -\infty$ . "Gravity as the weakest force".
  - Classical field theory treatment of background evolution can be rendered legitimate, nevertheless.
- Healthy bounce and Genesis cosmologies have been constructed in this framework
- Whether realistic scalar (and tensor) perturbations may be generated without inflation, remains to be seen.

## Backup

#### Equivalent ADM formulation of Horndeski theory

Gleyzes, Langlois, Piazza, Vernizzi '2014

Make use of ADM form of metric (perturbations included to all orders)

$$ds^{2} = N^{2}dt^{2} - \gamma_{ij}(N^{i}dt + dx^{i})(N^{j}dt + dx^{j})$$

• Choose unitary gauge with  $\pi = t$ 

- Field variables are all in metric
- ullet Horndeski action reads ( $G_5 = 0$  for brevity)

$$S = \int \sqrt{-g} d^4x \left[ \mathscr{A}_2(t,N) + \mathscr{A}_3(t,N) \mathscr{K} + \mathscr{A}_4(t,N) (\mathscr{K}^2 - \mathscr{K}_j^i \mathscr{K}_i^j - {}^{(3)}R) \right]$$

where  $\mathscr{K} = \gamma^{ij} \mathscr{K}_{ij}$ ,

$$\mathscr{K}_{ij} \equiv \frac{1}{2N} (\dot{\gamma}_{ij} - {}^{(3)}\nabla_i N_j - {}^{(3)}\nabla_j N_i)$$

is extrinsic curvature to hypersurfaces t = const.

$$F(\pi,X), K(\pi,X), G_4(\pi,X) \iff \mathscr{A}_2(t,N), \mathscr{A}_3(t,N), \mathscr{A}_4(t,N)$$

Homogeneous field eqs. are simple

$$(N\mathscr{A}_2)_N + 3N\mathscr{A}_{3N}H + 6N^2(N^{-1}\mathscr{A}_4)_N H^2 = 0,$$
  
$$\mathscr{A}_2 - 6\mathscr{A}_4 H^2 - \frac{1}{N}\frac{d}{dt}(\mathscr{A}_3 + 4\mathscr{A}_4 H) = 0$$

Concrete example of bounce  $(1 > \mu > 1/2)$ : as  $t \to -\infty$ 

$$\mathcal{A}_2 = (-t)^{-2\mu - 2} \cdot \left( -\frac{a_1}{N^2} + \frac{a_2}{N^4} \right)$$

$$\mathcal{A}_3 = (-t)^{-2\mu - 1} \cdot \frac{a_3}{N^3}$$

$$\mathcal{A}_4 = -\frac{1}{2} (-t)^{-2\mu}$$

When converted to covariant Lagrangian formalism it becomes the early bounce model with

$$F = c_1 X \cdot e^{2\mu\pi} + c_2 X^2 \cdot e^{(2\mu - 2)\pi} + 4\mu^2 \cdot X \cdot \ln X \cdot e^{2\mu\pi},$$

$$K = c_3 X \cdot e^{(2\mu - 2)\pi} + 2\mu e^{2\mu\pi} + \mu \cdot \ln X \cdot e^{2\mu\pi},$$

$$G_4 = \frac{1}{2} e^{2\mu\pi}.$$

## CHANGING GEERS

Horndeski theory: exotic version of Genesis only. Effective "Planck masses" tend to zero as  $t \to -\infty$ , gravity is the strongest force at early Genesis stage

Can Genesis be less exotic?

Horndeski is not the most general scalar-tensor theory with tensor + one scalar modes  $\Longrightarrow$  No Ostrogradsky ghost

• Variation of action may give higher order field equations, but they may combine in such a way that the resulting equations are second order.

Degenerate Higher-Order Scalar Tensor theories, DHOST

Langlois, Noui' 16; Crisostomi, Koyama, Tasinato' 16

Quadratic in second derivatives action

$$S = \int d^4x \sqrt{-g} \left( F(\pi, X) - K(\pi, X) \Box \pi + G_4(\pi, X) R + \sum_{i=1}^5 A_i(\pi, X) L_i \right),$$

with

$$L_1 = \pi_{;\mu\nu}\pi^{;\mu\nu}, \quad L_2 = (\Box\pi)^2,$$

$$L_3 = \pi^{,\mu} \pi_{;\mu\nu} \pi^{,\nu} \Box \pi, \quad L_4 = \pi^{,\mu} \pi_{;\mu\nu} \pi^{;\nu\rho} \pi_{,\rho}, \quad L_5 = \left(\pi^{,\mu} \pi_{;\mu\nu} \pi^{,\nu}\right)^2,$$

DHOST: in general, non-linear relations between  $G_4, A_1, \ldots, A_5$ .

Relatively simple subclass: "beyond Horndeski" theories

Zumalacárregui, Gacia-Bellido' 2014; Gleyzes, Langlois, Piazza, Vernizzi' 2014 Linear relations:

$$A_{3} = -A_{4} \equiv 2F_{4}, A_{1} = -A_{2} = -G_{4X} + XF_{4}; A_{5} = 0 \Longrightarrow$$

$$L = F(\pi, X) - K(\pi, X) \square \pi$$

$$+ G_{4}(\pi, X)R + G_{4,X} \cdot \left[ (\square \pi)^{2} - (\nabla_{\mu} \nabla_{\nu} \pi)^{2} \right]$$

$$+ F_{4}(\pi, X) \varepsilon^{\mu\nu\lambda\rho} \varepsilon^{\mu'\nu'\lambda'}{}_{\rho} \partial_{\mu} \pi \cdot \partial_{\mu'} \pi \cdot \nabla_{\nu} \nabla_{\nu'} \pi \cdot \nabla_{\lambda} \nabla_{\lambda'} \pi$$

● Way to understand (sometimes): disformal transformation

$$g_{\mu\nu} \rightarrow \Omega(\pi, X)g_{\mu\nu} + \Lambda(\pi, X)\partial_{\mu}\pi\partial_{\nu}\pi$$

Horndeski → beyond Horndeski

NB: This is formal trick:  $\Omega$ ,  $\Lambda$  may be singular. And in Genesis case (also bounce) they are!

#### No-go theorem for Genesis no longer holds

Effective field theory: Cai et.al.' 2016, Creminelli et.al.'2016 Covariant formalism: Kolevatov et.al.' 2017, Cai, Piao' 2017

One again has

$$\frac{d\xi}{dt} = a(t)(\mathscr{F}_{\mathscr{S}} + \mathscr{F}_{\mathscr{T}})$$

but now

$$\xi = -\frac{a(t)\mathscr{G}_{\mathscr{T}}(\mathscr{G}_{\mathscr{T}} + 2F_4X^2)}{\Theta(t)}$$

can cross zero.

Recall:  $\Theta(t) = 0$  at some t not a problem

Ijjas' 17;

Mironov, V.R., Volkova' 18

In fact,  $\Theta$ -crossing does occur in known examples.

Θ-crossing: why is it harmless?

$$L_S = \mathscr{G}_{\mathscr{S}}\dot{\zeta}^2 - a^{-2}\mathscr{F}_{\mathscr{S}}(\partial_i\zeta)^2$$

with

$$\mathcal{G}_{\mathcal{S}} = \frac{\Sigma \mathcal{G}_{\mathcal{T}}^{2}}{\Theta^{2}} + 3\mathcal{G}_{\mathcal{T}},$$

$$\mathcal{F}_{\mathcal{S}} = \frac{1}{a} \frac{d\xi}{dt} - \mathcal{F}_{\mathcal{T}},$$

$$\xi = \frac{a \left(\mathcal{G}_{\mathcal{T}} + 2F_{4}X^{2}\right)\mathcal{G}_{\mathcal{T}}}{\Theta}.$$

Thus, at crossing,  $\Theta \propto (t - t_{\times})$  we have  $\mathscr{G}_{\mathscr{S}}, \mathscr{F}_{\mathscr{S}} \propto (t - t_{\times})^{-2}$ . Equation of motion (spatial Fourier)

$$\frac{\partial}{\partial t}(\mathscr{G}_{\mathscr{S}}\dot{\zeta}) + k^2 \mathscr{F}_{\mathscr{S}}\zeta = 0 \implies \ddot{\zeta} - \frac{2}{(t - t_{\times})^2}\dot{\zeta} + k^2 \zeta = 0$$

Solution  $\zeta = c_1(1 + O[(t - t_{\times})^2]) + c_2(t - t_{\times})^3$ , smooth.  $\delta N \propto \dot{\zeta}/(t - t_{\times})$  and  $N^i$  also smooth. Q.E.D.

### Intelligent design: proof by example

Dubbed "Inverse method" by Ijjas, Steinhardt' 2016

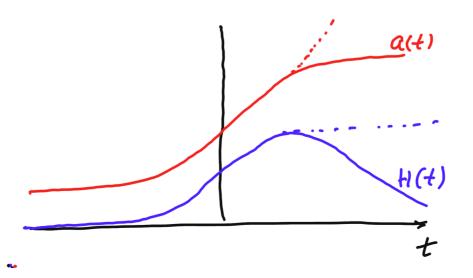
• Choose background  $\pi(t) = t$ , no loss of generality (field redefinition).

Then 
$$X = (\partial \pi)^2 = 1$$
.

Field equations and stability conditions involve Lagrangian functions F, K,  $G_4$  and  $F_4$  and their X-derivatives  $F_X$ ,  $F_{XX}$ , etc, all at  $\pi(t) = t$ , X = 1.

These are yet undetermined independent functions of time  $f_0(t) = F(\pi(t), X = 1), f_1(t) = F_X(\pi(t), X = 1), \text{ etc.}$ 

• Choose your favorite H(t).



In particular, theory at late times may become GR + conventional massless scalar field  $\phi = (2/3)^{1/2} \log \pi$ , i.e., at late times

$$\phi = \sqrt{\frac{2}{3}} \log t$$
,  $H = \frac{1}{3t}$  and

$$L = -\frac{1}{2}R + \frac{1}{3}\left(\frac{\partial\pi}{\pi}\right)^2 \iff G_4 = -\frac{1}{2}, \quad F(\pi, X) = \frac{1}{3}\frac{X}{\pi^2}, \quad K = F_4 = 0.$$

- Cook up Lagrangian functions in such a way that
  - Field equations are satisfied
  - Stability conditions are satisfied at all times

All this can be done for Genesis (and also bounce)

Mironov, V.R., Volkova' 2018, 2019

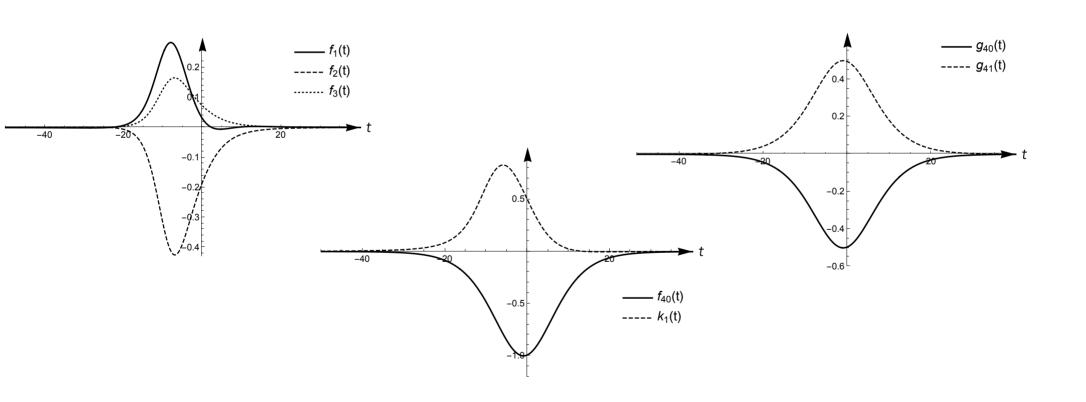
Moreover, one can design a model in such a way that

- Tensor perturbations are subluminal at all times (or luminal, if one wishes so)
- Scalar perturbations are subluminal at all times

# Nothing sophisticated:

$$F(\pi, X) = f_1(\pi) \cdot X + f_2(\pi) \cdot X^2 + f_3(\pi) \cdot X^3 , \quad K(\pi, X) = k_1(\pi) \cdot X,$$

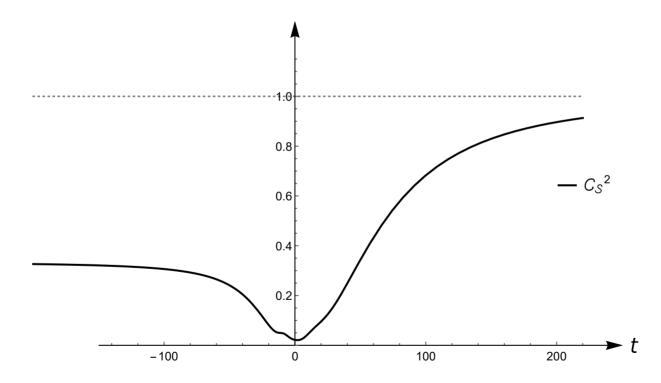
$$G_4(\pi, X) = \frac{1}{2} + g_{40}(\pi) + g_{41}(\pi) \cdot X , \quad F_4(\pi, X) = f_{40}(\pi).$$



Sound speeds:

$$c_{\mathscr{T}}^2 = \frac{\mathscr{F}_{\mathscr{T}}}{\mathscr{G}_{\mathscr{T}}} = 1$$

$$c_{\mathscr{S}}^2 = \frac{\mathscr{F}_{\mathscr{S}}}{\mathscr{G}_{\mathscr{S}}} < 1$$



Healthy Genesis with GR asymptotics at  $t \to +\infty$ 

However, there is still an issue to worry about: superluminality.

Theory with superluminal excitations cannot descend from healthy Lorentz-invariant UV-complete theory

Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi '2006

Not an issue in DHOST theories per se.

But things change once one allows for extra field(s) ("matter")

NB: consistency issue unrelated to Genesis.

#### DHOST Ia with additional scalar field

Additional minimally coupled scalar:  $L_{\chi} = (\partial \chi)^2$ 

NB. Naively: luminal propagation.

Consider DHOST + rolling  $\chi$  background,  $\dot{\chi}_c \neq 0$ 

New featue: DHOST perturbations kinetically mix with  $\delta \chi$ 

Langlois, Mancarella, Noui, Vernizzi '2017

Perturbations about FLRW background with DHOST and rolling  $\chi_c$ : in scalar sector parametrized by  $u^A$ , A = 1, 2,  $u^1 = \zeta$ ,  $u^2 = \delta \chi$ .

Quadratic Lagrangian (modulo terms with less than two derivatives)

$$L_{\pi+\chi}^{(2)\,scalar} = G_{AB}\,\dot{u}^A\dot{u}^B - \frac{1}{a^2}F_{AB}\,\partial_i\,u^A\partial_i\,u^B$$

$$G_{AB} = egin{pmatrix} \mathscr{G}_\mathscr{S} & \dot{\chi}_c g \ \dot{\chi}_c g & 1 \end{pmatrix}, \qquad F_{AB} = egin{pmatrix} \mathscr{F}_\mathscr{S} & \dot{\chi}_c f \ \dot{\chi}_c f & 1 \end{pmatrix}, \ \dot{\chi}_c f & 1 \end{pmatrix}$$

 $g, f(\pi, X)$  = combinations of functions in DHOST Lagrangian, vanish in Horndeski limit

Sound speeds squared  $c^2$  are determined by

$$\det\left(F_{AB} - c^2 G_{AB}\right) = 0$$

If  $c_{\mathscr{S}}^2 \equiv \frac{\mathscr{F}_{\mathscr{S}}}{\mathscr{G}_{\mathscr{S}}} < 1$  (subluminal DHOST), then one of the sound speeds

$$c^2 = 1 + \frac{\dot{\chi}_c^2 (f - g)^2}{\mathscr{G}_{\mathscr{S}} (1 - c_{\mathscr{S}}^2)} + \mathscr{O}(\dot{\chi}_c^4)$$

For  $c_{\mathscr{S}}^2 \equiv \frac{\mathscr{F}_{\mathscr{S}}}{\mathscr{G}_{\mathscr{S}}} = 1$  (luminal DHOST), one of the sound speeds

$$c^2 = 1 + \left(\frac{\dot{\chi}_c^2 (f - g)^2}{\mathscr{G}_{\mathscr{S}}}\right)^{1/2} + \mathscr{O}(\dot{\chi}_c^2)$$

In both cases one of the modes superluminal unless g = f

Mironov, V.R., Volkova '2020

Beyond Horndeski:

$$f - g = 2F_4X$$

precisely the combination used to evade no-go for Genesis.

Beyond Horndeski does not marry conventional scalars and other perfect fluids with luminal excitations, e.g., luminal k-essence.

Imposing  $g = f \Longrightarrow \text{Very special DHOST theory.}$ 

$$S = \int d^4x \sqrt{-g} \left( F(\pi, X) + K(\pi, X) \Box \pi + G_4(\pi, X) R + \sum_{i=1}^5 A_i(\pi, X) L_i \right)$$

DHOST Ia:

$$A_{2} = -A_{1}$$

$$8(G_{4} - XA_{1})^{2} \cdot A_{4} = -16XA_{1}^{3} + 4(3G_{4} + 16XG_{4X})A_{1}^{2} - X^{2}G_{4}A_{3}^{2}$$

$$- (16X^{2}G_{4X} - 12XG_{4})A_{3}A_{1} - 16G_{4X}(3G_{4} + 4XG_{4X})A_{1}$$

$$+ 8G_{4}(XG_{4X} - G_{4})A_{3} + 48G_{4}G_{4X}^{2}$$

$$8(G_{4} - XA_{1})^{2} \cdot A_{5} = (4G_{4X} - 2A_{1} + XA_{3})(-2A_{1}^{2} - 3XA_{1}A_{3} + 4G_{4X}A_{1} + 4G_{4}A_{3})$$

Extra condition f = g:

$$A_3 = \frac{2(A_1 - 2G_{4X})(A_1X - 2G_4)}{X(3A_1X - 4G_4)}$$

Still unknown whether this theory admits healthy Genesis.

#### To summarize

- Construcing Genesis (an also bounce) cosmology, thus avoiding classical singularity, does not appear impossible.
- This requires unusual fields with complicated Lagrangians involving second derivatives.
  - Absence of Ostrogradsky ghost, catastrophic instabilities and superluminality imposes strong (non-linear!) constraints on functions in Lagrangian.
- Is the price too high —maybe!

# Other issues

ullet Transition to hot epoch. Does not appear problematic, similar to k-inflation.

Armendariz-Picon, Damour, Mukhanov' 99

Generation of density perturbations. Need a separate mechanism to generate nearly flat power spectrum.

To name a few:

Matter bounce

Finelli, Brandenberger' 2001 Wands' 98

• Conformal mechanism

V R' 2009 Creminelli, Nicolis, Trincherini' 2010 Hinterbichler, Khouri' 2011, ...

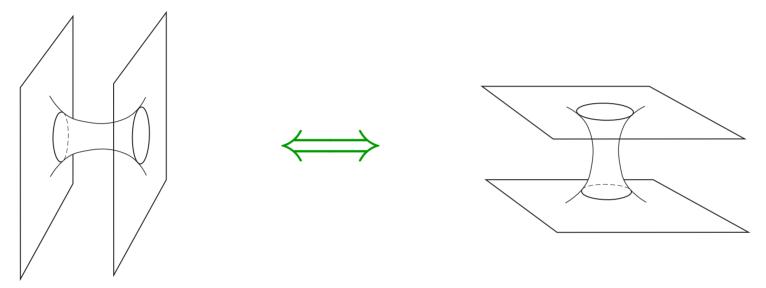
Possible way to generate tensor perturbations (gravity waves) with blue or peaked power spectrum (cf. NANOGrav)

Tahara, Kobayashi' 20

### Instead of conclusion: where else DHOST may be instrumental?

#### Lorentzian wormholes

Static wormhole  $\iff$  Bouncing Universe



No-go in NEC-preserving theories

No-go in Horndeski: no stable, static, spherically symmetric wormholes: always ghosts.

V.R.' 16; Evseev, Melichev' 18

Not obviously impossible in DHOST

Mironov, V.R., Volkova' 18; Francolini et. al.' 18

Studying stability HUGELY difficult.

# • Creation of a universe in the laboratory

• Question raised in mid-80's, right after invention of inflationary theory

Berezin, Kuzmin, Tkachev' 1984; Guth, Farhi' 1986

Idea: create, in a finite region of space, inflationary initial conditions  $\Longrightarrow$  this region will inflate to enormous size and in the end will look like our Universe.

• Do not need much energy: pour little more than Planckian energy into little more than Planckian volume.

If NEC holds, no way: initial singularity

Guth, Farhi' 1986; Berezin, Kuzmin, Tkachev' 1987

How about DHOST theories?

Amazingly, many questions of principle still not answered.

Ahead: more to understand.

# Backup slides

No-go theorem for theories with Lagrangians involving first derivatives of fields only (and minimal coupling to gravity)

Dubovsky, Gregoire, Nicolis, Rattazzi' 2006 Buniy, Hsu, Murray' 2006

$$L = F(X^{IJ}, \pi^I)$$

with  $X^{IJ} = \partial_{\mu} \pi^{I} \partial^{\mu} \pi^{J} \Longrightarrow$ 

$$T_{\mu\nu} = 2\frac{\partial F}{\partial X^{IJ}} \partial_{\mu} \pi^{I} \partial_{\nu} \pi^{J} - g_{\mu\nu} F$$

In homogeneous background

$$T_{00} \equiv \rho = 2 \frac{\partial F}{\partial X^{IJ}} X^{IJ} - F$$
$$T_{11} = T_{22} = T_{33} \equiv p = F$$

and

$$\rho + p = 2 \frac{\partial F}{\partial X^{IJ}} X^{IJ} = 2 \frac{\partial F}{\partial X^{IJ}} \dot{\pi}^I \dot{\pi}^J$$

NEC-violation: matrix  $\partial F/\partial X_c^{IJ}$  non-positive definite. But

Lagrangian for perturbations  $\pi^I = \pi_c^I + \delta \pi^I$ 

$$L_{\delta\pi} = A_{IJ} \ \partial_t \delta\pi^I \cdot \partial_t \delta\pi^J - \frac{\partial F}{\partial X_c^{IJ}} \ \partial_i \delta\pi^I \cdot \partial_i \delta\pi^J + \dots$$

Gradient instabilities and/or ghosts

NB. Loophole:  $\partial F/\partial X_c^{IJ}$  degenerate.

Higher derivative terms (understood in effective field theory sense) become important and help.

Ghost condensate

# Formulas in beyond Horndeski

To simplify:  $G_5 = F_5 = 0$ 

NB: Horndeski is restored for  $F_4 = 0$ 

Tensor sector:

$$\mathscr{G}_{\mathscr{T}} = 2G_4 - 4G_{4X}X - 2F_4X^2,$$
$$\mathscr{F}_{\mathscr{T}} = 2G_4$$

Scalar sector:

$$\mathscr{G}_{\mathscr{S}} = \frac{\Sigma \mathscr{G}_{\mathscr{T}}^{2}}{\Theta^{2}} + 3\mathscr{G}_{\mathscr{T}},$$

$$\mathscr{F}_{\mathscr{S}} = \frac{1}{a} \frac{d\xi}{dt} - \mathscr{F}_{\mathscr{T}},$$

$$\xi = \frac{a \left(\mathscr{G}_{\mathscr{T}} + 2F_{4}X^{2}\right)\mathscr{G}_{\mathscr{T}}}{\Theta}.$$

Where

$$\Theta = -K_X X \dot{\pi} + 2G_4 H - 8HG_{4X} X - 8HG_{4XX} X^2 + G_{4\pi} \dot{\pi} + 2G_{4\pi X} X \dot{\pi}$$

$$-10HF_4 X^2 - 4HF_{4X} X^3,$$

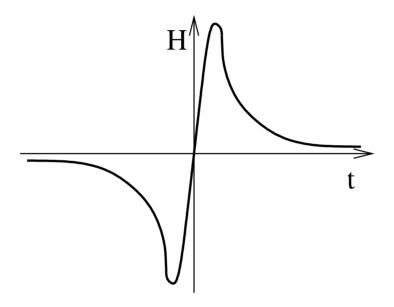
$$\Sigma = F_X X + 2F_{XX} X^2 + 12HK_X X \dot{\pi} + 6HK_{XX} X^2 \dot{\pi} - K_{\pi} X - K_{\pi X} X^2$$

$$-6H^2 G_4 + 42H^2 G_{4X} X + 96H^2 G_{4XX} X^2 + 24H^2 G_{4XXX} X^3 - 6HG_{4\pi} \dot{\pi}$$

$$-30HG_{4\pi X} X \dot{\pi} - 12HG_{4\pi XX} X^2 \dot{\pi} + 90H^2 F_4 X^2 + 78H^2 F_{4X} X^3 + 12H^2 F_{4XX} X^4$$

# Bounce by intelligent design

• Choose your favorite H(t) such that  $H(t) \to \frac{1}{3t}$  as  $|t| \to \infty$  GR + Galileon = conventional massless scalar.

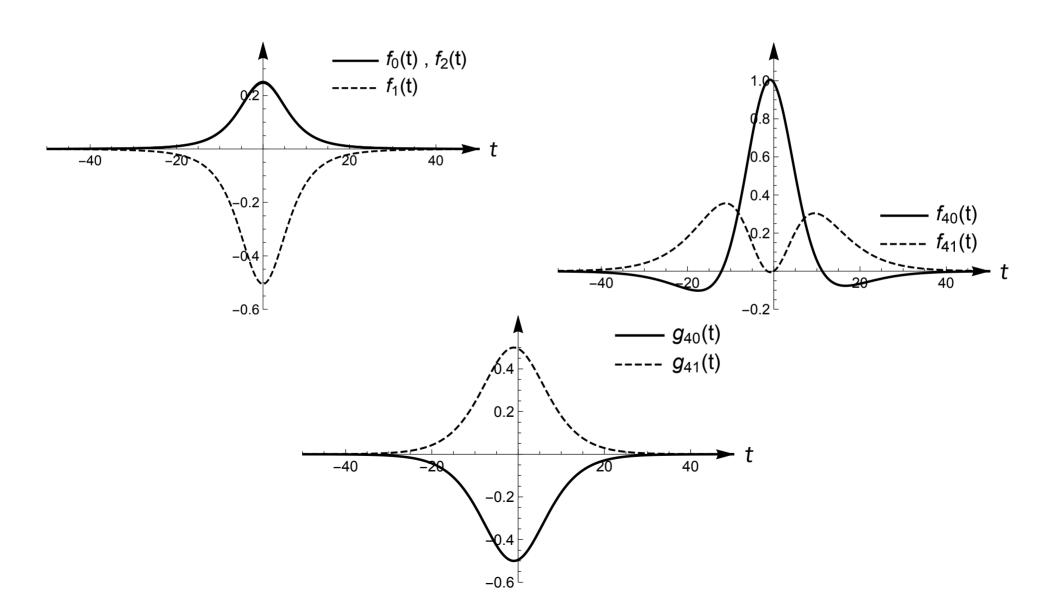


• Asymptotics of Lagrangian functions as  $|t| \to \infty$ :

$$F(t) = \frac{1}{t^2}, \quad F_X(t) = \frac{1}{t^2} \implies F = \frac{(\partial \pi)^2}{\pi^2} = (\partial \log \pi)^2$$

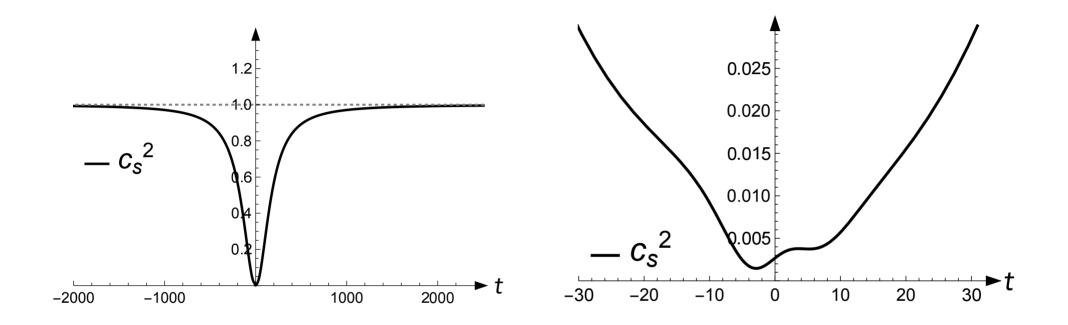
$$G_4 = \frac{M_{Pl}^2}{16\pi}, \quad K = F_4 = 0$$

- Cook up Lagrangian functions in such a way that
  - Field equation are satisfied
  - Stability conditions are satisfied at all times



No kidding: speed of gravity waves is always 1.

Speed of scalar perturbation  $0 < c_s^2 \le 1$ 



Completely stable bounce