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basic to quantum physics
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quantum geometrodynamics
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traditional approach:
𝑥! 𝑒"#$%/ℏ 𝑥( = 𝑥! 𝑒")$ 𝑥(

𝑖. 𝑒. , analytically continue to 𝑡 = −𝑖ℏ

“Euclidean time” =inverse temperature

This trick has dominated rigorous QFT

However, interference and thermal 
equilibrium are quite different physically

and gravity is in general incompatible 
with thermal equilibrium (Jeans instability)



Instead of rotating time we deform integration contour in the path integral, 
exploiting a method for performing highly oscillatory integrals due to

who gave a general criterion for whether a given saddle is n     
=.       relevant to a real integral (in arbitrary finite dimension)

our work: flow the contour to find the relevant “Lefschetz thimbles” (or steepest
descent contours)

new approach to defining Lorentzian (real time) path integrals 
(J. Feldbrugge, NT in prep)                        

Picard-Lefschetz
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sum over relevant 
classical solutions

Real, positive
probability measure

phase, reduces to Maslow 
in semiclassical limit

Our definition implies the following exact formula

classical theory organizes the quantum theory 
classical solutions can still interfere
the formula should apply to gravity

contour in space of complexified paths,
over which PI is absolutely convergent



Highly oscillatory integrals
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e.g., Gaussian (Fresnel integral) 

Conditionally, not absolutely convergent

Euler spiral
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Lefschetz thimble

What about higher dimensions? Infinite dimensions?



D=2 : square cutoff

D=2 : round cutoff
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D>2 : sharp cutoff

D>2 : smooth cutoff
(allows cancellations,
which are physical)
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The result for a smooth cutoff (taken to infinity at the end) is 
obtained without using a cutoff at all, by using Cauchy’s theorem.  

Assuming cutoff function is singular only at infinity, can deform 
contour to steepest descent contour and then take cutoff  to infinity
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Note: limits 𝑅 → ∞, 𝐿 → ∞ don’t commuteSte

epest 
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steepest descent plus “arc at infinity”:



e.g., quartic oscillator 𝑆 = ∫,
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Classical equations of motion: $̈
%!
= −2𝑥4

countable infinity of classical solutions
e.g., for BCs 𝑥 0 = 𝑥 1 = 0,

𝑥+,- = 𝑛𝜅 sn 𝑛𝜅 𝑡, −1 , 𝑛 = 1,2. .
(𝜅 ≡ 2𝐾(−1) ≈ 2.622)
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Action    𝑆 = *& +&
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𝑛 = 3
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Jacobi elliptic function



ℎ = 𝑅𝑒[𝑖(𝑥+-𝑥5)]
𝑥 = 𝑋 + 𝑖𝑌

𝑋

𝑌
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Lefschetz “thimbles”
obtained by flowing
the real axis downhill

picture of the complex plane for each mode coefficient, showing

“height function” ℎ with saddles and steepest descent contours



Wick Rotation 

Take the Lorentzian theory and rotate 𝑇 clockwise, 𝑇 → 𝑒($%𝑇, 0 ≤ 𝜃 ≤ #
"

Classical solutions still satisfy the boundary conditions

Classical action 𝑆+∝ $
%&

⟹ 𝑅𝑒[𝑖 𝑆+] ∝ " =>? @.
but relevant saddles must have 𝑅𝑒[𝑖 𝑆+]≤ 0

So the nontrivial classical saddles all disappear 
in the rotation to imaginary time

Conversely, recovering their effect from 
an imaginary time calculation would be exponentially hard

irrelevant

−sin 3𝜃

relevant
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8BC
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Free particle

Expand fluctuations in Fourier modes

deform contour
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eigenfunctions of L𝑂, 𝑆(@)= C
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trivial thimble
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𝑋(𝑡)

Y(𝑡)

gradient flow
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thimble:

ℎ(𝜏)

𝑥 𝑡 = 𝑋(𝑡) + 𝑖𝑌(𝑡)

𝑋

𝑌
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gradient flow for each
mode: can solve
analytically at small
and large |𝑥|

𝜏



Since, at large 𝑥 , ℎ decreases faster than quadratically on the

thimble , there exists a bounding Gaussian theory 𝑔, 

ℎ ≤ 𝑔 ≤ 0 :
𝑔

ℎ

This suffices to prove that the path integral exists

satisfying

for all  𝑥 𝑡 𝜖 𝐽



1)Only include modes 𝑚 ≤ 𝑁 in nonlinear terms and take limit 𝑁 → ∞

Lebesgue’s dominated convergence theorem shows the limit exists
Bochner-Minlos theorem shows the measure 𝑑𝜇*! ℏ, 𝛿𝑥 exists, 
phase factor 𝑒#."! /, arises from 𝑑𝛿𝑥A along thimble
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2)Sum over classical solutions generally does not converge: 
in NRQM the FPI propagator is in general only a distribution 



Time smoothed propagator does converge
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but the result 
depends on 
the smoothing 
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e.g., quartic
oscillator
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Close interplay between quantum and classical pictures:

Constructive interference between quantum modes yields the 
discrete set of classical solutions

Constructive interference between classical solutions yields the 
semi-classical quantization of Einstein and Keller

All of this is clarified by our construction 
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The “weak density” 
(à la Aharonov et al.) 
exhibits the influence 
of the quantum system on 
a weak measurement made in 
between state preparation and 
strong measurement.

This is how spacetime emerges
in quantum geometrodynamics

𝑥
𝑡

Classical

Quantum



Application: gravitational microlensing Einstein 1936
Nakamura–Deguchi 1999
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         θ*  is Einstein angle, ω=105 M
M⊙
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Wave optics effects will be observable in the future: contain much more information

For a point mass
in thin lens approx



Geometric optics                Wave optics               multiple redshifts (ie 3d lens)

Lensing of a binary system
w/ J. Feldbrugge (1909.04632; 2008.01154)



Спасибо! 
Thank you!


