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Recent decades an enormous progress in calculation of higher loop
amplitudes of D=4 supersymmetric theories, in particular of maximally
supersymmetric 4D N = 4 SYM and N = 8, was reached

[Bern, Carrasco, Dixon, Johansson and Roiban, Fortsch.Phys. 2011],
[Benincasa, IJMP A 2014],
[R. Britto, F. Cachazo, B. Feng and E. Witten, PRL2005] and refs. therein.

The list of relevant papers certainly includes
Parke and Taylor, PRL 1986.
M.Bianchi, H.Elvang, D. Freedman, JHEP 2008 [arXiv:0805.0757 [hep-th]],
Drummond, Henn, Korchemsky, E. Sokatchev, NPB 2010 [arXiv:0807.1095],
Drummond, Henn, Plefka, JHEP 2010 [arXiv:0902.2987 [hep-th]],
D. Kazakov, Borlakov, Tolkachev, Vlasenko, PRD 2018 [arXiv:1712.04348
[hep-th]].

and many others...
Sorry for missing a lot of references!
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Many of these works used essentially spinor helicity formalism related
(although not identical) to the twistor approach [Penrose 1963]
and its superfield generalization related to the supertwistor approach [Ferber
1978],

Arkani-Hamed, Cachazo, Kaplan, JHEP 2010 [arXiv:0808.1446[hep-th]],
Brandhuber, Heslop, Travaglini, PRD 2008 [arXiv:0807.4097 [hep-th]].
... .

Thus it was natural to search for generalization of these for the case of higher
dimensions, especially D=10 and D=11 interesting in String/M-theory
perspective.
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Higher D generalizations of spinor helicity formalism

The generalization of spinor helicity and superamplitude formalisms to D=6 is
quite straightforward [Cheung and O’Connell JHEP 2009].

D=10 spinor helicity formalism is more complicated because the helicity and
polarization spinors are constrained variables.
This was proposed by Caron-Huot and O’Connell [JHEP 10].
In [I.B: PRL 2017, JHEP 11(2018)] we observed that 10D spinor helicity
variables of [Caron-Huot+O’Connell 2010] can be identified with

spinor moving frame variables
[I.B.+ Zheltukhin 91-95], [I.B.+ Nurmagambetov 96], ... or, equivalently, with
D=10 Lorentz harmonics.
[Galperin+Howe+Stelle=91, Galperin+Delduc+Sokatchev =91].

This observation allowed us to construct the 11D spinor helicity formalism
[I.B: PRL 2017, JHEP 11(2018)].
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Higher D=10,11 generalizations of superamplitude formalism

Moreover, on this basis we proposed and elaborated the generalization of the
4D superamplitude approach to D=11 supergravity and 10D SYM [I.B:PRL
2017, JHEP 11(2018)], the so-called constrained superamplitude formalism.
Furthermore, in [IB: JHEP 05(2018)] we constructed another, ’almost
unconstrained’ analytic superamplitude formalism for 11D SUGRA and 10D
SYM.

More recently an apparently different approach to 11D SG and 10D SYM
amplitudes was proposed by Geyer and Mason [2019=PLB2020].
It is based on the so-called polarized scattering equation (PSE), which can be
considered as a kind of square root of the CHY scattering equations
[Cachazo+He+Yuan 2013] (actually present already in [Gross+Mende 87,88;
Gross+Mañes 89]).
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The relation of 11D polarized scattering equation approach with ambitwistor
string models was discussed and especially stressed in
[Geyer+Mason:2019=PLB2020], where a modification of the 11D ambitwistor
superstring action form our [I.B. JHEP 2014] was proposed for these
purposes.
This talk is based on [I.B. JHEP 11(2019)] where we

shown that the correct basis to derive the PSE is provided by the original 11D
ambitwistor superstring of [I.B. JHEP2014] rather then its modification
suggested in [Geyer+Mason:2019=PLB2020]
and presented a rigorous derivation of the polarized scattering equation (PSE)
and other basic equations of the PSE formlism.
To this end we have used essentially the 11D supertwistor approach,
the possibility to formulate the 11D ambitwistor superstring as a system in an
enlarged superspace with 528 bosonic coordinates as well as
the SO(16) gauge symmetry of the 11D ambitwistor superstring [I.B.:2014lja].
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After a brief review of scattering equations and D=4 spinor helicity formalism
and superamplitudes,
we will introduce the 11D spinor frame variables and helicity spinors encoding
momenta and polarization data of scattered particles on this basis.
Then we describe the scattering equations and use the supertwistor form of
the 11D ambitwistor superstring action with suitable vortex operators to obtain
the 11D polarized scattering equation and other basic equations of the PSE
formalism.
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Scattering equations
Scattering equations [Gross et al 87,88; Cachazo, He, Yuan 2013] relating massless scattered
particles (kµikµi = 0) and points σi on Riemann sphere read

∑
i

kµi kjµ

σi − σj
= 0 .

Using this one can write a convenient expression for scattering amplitudes (see below).
One can introduce the meromorphic 11-vector function

Pµ(σ) =
∑

i

kiµ

σ − σi

and write the scattering equation in the form

kµi Pµ(σi ) = 0 .
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How to write amplitude with (polarized) scattering equation
Let us present the form of 11D amplitude in CHY formalism written with the use of scattering
equation ki · P(σi ) = ki

µPµ(σi ) = 0:

A11D
n =

∫
dµn det ′M eF :=

∫
1

vol(SL(2,C))

n∏
i=1

dσi

n∏
i=1

′ δ(ki · P(σi )) det ′M eF ,

where
n∏

i=1

′ δ(ki · P(σi )) = σjkσklσlj

n∏
i=1,i 6=j,k,l

δ(ki · P(σi )) and 1
vol(SL(2,C))

n∏
i=1

dσi =
n∏

i=1

′ dσi are

independent on choice of j, k , l , σij = σi − σj , M is 2n × 2n CHY matrix

M =

 ki ·kj
σij

Ui ·kj
σij
− Ui · P(σi )δij

− Uj ·ki
σji

+ Uj · P(σj )δij
Ui ·Uj
σij

 , det ′M =
4
σ2

ij
detMij

ij ,

where Ui is the polarization vector and the factor eF determines the fermionic contribution.

To write this eF we need helicity spinors and polarized scattering equation.
In D=4 also the measure of the amplitude simplify when written in terms of helicity spinors.
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One can also write the scattering equation as Resσ=σi
1
2 P2(σ) = 0 .

This actually implies [Geyer+Mason=2019] the light-likeness of the meromorphic 11–vector
function,

Pµ(σ)Pµ(σ) = 0

which can be considered as the third equivalent form of the scattering eq.
The constraint Pµ(σ)Pµ(σ) = 0 can be generated from the so-called ambitwistor string action
[Mason+Skinner=2013].
It can be considered as extended complexified massless particle action,
i.e. as massless particle action the worldline of which is replaced by 2d space and time
derivative replaced by holomorphic drivative.

Pµ(σ) =
∑

i
kiµ
σ−σi

can be obtained from the deformation of this action by incorporating of the
contribution to the path integral measure of the suitable vertex operators.
Here we will use 11D supersymmetric generalization of the ambitwistor superstring action
[IB:2014] to obtain the Polarized version of the 11D Scettering equation - 11D PSE proposed
by Geyer and Mason [2019=PLB2020].
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Amplitudes and superamplitudes in D=4

Bosonic spinors and spinor helicity formalism.
An on-shell n-particle amplitude of Yang-Mills (or gravity),

A(n)(p(1),U(1); ..., p(n),U(n)) ,

depends on n light-like momenta pµ(i), pµ(i)pµ(i) = 0 ,

and n polarization vectors Uµ(i) which obey pµ(i)U
µ
(i) = 0 .

In D = 4 spinor helicity formalism both data are encoded in the bosonic Weyl spinor

λA
(i) = (λ̄Ȧ

(i))
∗ (A = 1, 2 , Ȧ = 1, 2) called helicity spinor.

The light-like momenta are defined through Cartan-Penrose representation

pµ(i)σ
µ

AȦ
= 2λA(i)λ̄Ȧ(i) ⇔ pµ(i) = λ(i)σ̃µλ̄(i), µ = 0, ..., 3 ,

where A = 1, 2, Ȧ = 1, 2, σµ
AȦ

are relativistic Pauli matrices, obeying σ(µσ̃ν) = ηµν and

σµAȦσ
µ

BḂ
= 2εABεȦḂ , σµ

AȦ
σ̃νȦA = 2ηµν .
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Amplitudes and superamplitudes in D=4

Bosonic spinors and spinor helicity formalism
The polarization vectors are defined as

U(−)

AȦ(i)
=
λA(i) w̄ Ȧ

[λ̄(i)w̄ ]
, U(+)

AȦ(i)
=

wA λ̄Ȧ(i)

< wλ(i) >
⇒ pµ(i)ε

(±)
µ(i) = 0

where w̄
Ȧ

= (wA)∗ is a constant reference spinor and ± ↔ helicity ±1.

In D=4 spinor helicity formalism the commonly accepted notation are

< ij >≡< λ(i)λ(j) >= εABλ
A
(i)λ

B
(j) = − < ji > ,

[ij] ≡ [λ̄(i)λ̄(j)] = εȦḂλ̄
Ȧ
(i)λ̄

Ḃ
(j) = −[ji] ,

where
εAB =

(
0 −1
1 0

)
= −εAB , εȦḂ =

(
0 −1
1 0

)
= −εȦḂ .
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Amplitudes and superamplitudes in D=4

D=4 polarized scattering equation

In D=4 Pµ(σ)Pµ(σ) = 0 can be solved in terms of complex Weyl spinor function

Pµ(σ) = 1
2λA(σ)λ̄Ȧ(σ)σ̃ȦA

µ .

To factorize the meromorphic vector function Pµ(σ) =
∑

i
kiµ
σ−σi

we have to use a meromorphic

λA(σ) =
l∑

i=1

uiεiλAi

σ − σi
and λ̄Ȧ(σ) =

n∑
i=l+1

ūi ε̄i λ̄Ȧi

σ − σi
.

Here λAi and εi characterize the momentum and polarization of scattering particles

kiAȦ = λAi λ̄Ȧi , UAȦi = εiλAi w̄Ȧ/[λ̄i w̄ ] or UAȦj = ε̄jwAλ̄Ȧi/ < λjw >

and ui are complex numbers. The data obey the polarized scattering equation.

ui λ̄α̇(σi ) = λ̄α̇i
εi
, i = 1, ..., l, λα(σj ) ūj =

λαj
ε̄j
, j = l + 1, ..., n .
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Amplitudes and superamplitudes in D=4

D=4 amplitudes from polarized scattering equation (from ambitwistor superstring)
The integration measure to calculate D=4 amplitudes as it was obtained from D=4 ambitwistor
superstring,

dµ4d
n,l =

l∏
i=1

δ2
(

ui λ̄α̇(σi )−
λ̄α̇i

εi

) n∏
i=l+1

δ2
(
λα(σj )ūj −

λαj

ε̄j

) ∏n
j=1 dσjduj/uj

Vol(GL(2,C))
,

contains delta functions of the polarized scattering equation and integrations over constants ui .
Here GL(2,C) = SL(2,C)⊗GL(1,C) with GL(1,C) generated by

l∑
i=1

ui∂/∂ui −
n∑

j=l+1

uj∂/∂uj

so that ∏n
j=1 dσjduj/uj

Vol(GL(2,C))
= σi1 i2σi2 i3σi1 i3

n∏
j=1,j 6=i1 i2 i3

dσj

n∏
j=1,j 6=i4

duj/uj .
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Generalizaion of Cartan-Penrose representation to D=11

Light-like momentum and moving frame in arbitrary D

To construct the spinor helicity formalism for arbitrary D, we first should find the
counterpart of D=4 Cartan-Pernose representation which solves papa = 0 .

A particular solution of the constraint papa = 0 is given by

p(a) = ρ (1,0, ...,0,−1)

with arbitrary ρ = ρ(τ) describing the energy of the massless particle.
Any other solution can be obtained from this (or from the reflected one with
negative ρ) by performing an O(1,D − 1) Lorentz transformation

u(b)
a ∈ O(1,D − 1) ⇔ u(b)

a ua(c) = η(b)(c) = diag(+1,−1, ...,−1) ,

i.e
pa =u(b)

a p(b) = ρ (u0
a − u(D−1)

a ) =: ρ# u=
a .
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Generalizaion of Cartan-Penrose representation to D=11

Solution of the light-likeness condition

It is convenient to write the vector frame matrix u(b)
a (τ) ∈ SO(1,D-1) explicitly in terms of u=

a , its
complementary u#

a (τ) = (u0
a + u(D−1)

a ), and uI
a (light-cone harmonics [Sokatchev 86,87]). Then

U := (u(b)
a ) =

(
1
2

(
u=

a + u#
a

)
, uI

a ,
1
2

(
u#

a − u=
a

))
∈ SO↑(1,D − 1)

implies UTηU = η which can be split into [E. Sokatchev, 86,87]

u=
a ua= = 0 , u#

a ua# = 0 , u=
a ua# = 2 ,

uI
aua= = 0 , uI

aua# = 0 , uI
auaJ = −δIJ .

In particular, we see that ua= is light-like, u=
a ua= = 0, and this is the reason why

pa = u(b)
a p(b) = ρ#u=

a solves papa = 0.
The nontrivial consequences of this simple fact appear when we ”extract square root” from the
vector frame by introducing the spinor frame.
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Generalizaion of Cartan-Penrose representation to D=11

Spinor moving frame =
√

moving frame

Spinor moving frame =
√

moving frame is defined by conditions of Lorentz invariance of
D-dimensional Γa and also Cαβ if such exists, i.e. by a matrix V ∈ Spin(1,D − 1) which obeys

V ΓbV T = u(a)
b Γ(a) , V T Γ̃(a)V = Γ̃bu(a)

b (and VCV T = C , if C exists) .

The SO(1, 1)× SO(D − 2) invariant splitting of the spinor frame matrix is

V (β)
α =

(
v +
αq̇ , v −αq

)
∈ Spin(1,D − 1) ↔ u(a)

b = (u=
b , u

#
b , u

I
b) ,

where q and q̇ are indices of the spinor representations of SO(D − 2), which can be different

D = 10 : α = 1, ..., 16 , q̇ = 1, ..., 8 , q = 1, ..., 8 ,

or the same

D = 11 : α = 1, ..., 32 , q = q̇ = 1, ..., 16, v +
αq̇ ≡ v +

αq .
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Generalizaion of Cartan-Penrose representation to D=11

With the suitable representation for Γ–matrices, the constraints
V ΓbV T = u(a)

b Γ(a) V T Γ̃(a)V = Γ̃bu(a)
b can be split into

u=
a Γa

αβ = 2vαq
−vβq

− , v−q Γ̃av−p = u=
a δqp,

, u#
a Γa

αβ = 2vαq̇
+vβq̇

+ , v+
q̇ Γ̃av+

ṗ = u#
a δq̇ṗ ,

uI
aΓa
αβ = 2v(α|q

−γI
qq̇v|β)q̇

+ , v−q Γ̃av+
ṗ = uI

aγ
I
qṗ .

For D=11 q,p ≡ q̇, ṗ = 1, ...,16 are spinor indices of SO(9) and γI
qp = γI

pq.
In our perspective an especially important among above relations are
u=

a Γa
αβ = 2vαq

−vβq
− , v−q Γ̃av−p = u=

a δqp

which allow to state that v −αq is a square root of the light-like u=
a

in the same sense as in D=4 one states λA ”=
√

pa” keeping in mind the
Cartan-Penrose representation pµσ

µ

AȦ
= 2λAλ̄Ȧ.
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Generalizaion of Cartan-Penrose representation to D=11

D=10 vs D=11 spinor helicity formalism

The D=10 spinor helicity variables of Caron-Huot and O’Connell [2013] are λαq =
√
ρ#v −αq

carrying 8s index, and the polarization spinor is λαq̇ =
√
ρ#v−αq̇ which carries 8c spinor index of

SO(8).
Here ρ# comes from pa = ρ#u=

a which now reads pa = 1
8λΓaλ.

In contrast, in 11D the polarization spinor λαq =
√
ρ#v−αq = −iCαβλβq actually coincides with

the spinor helicity variable λαq =
√
ρ#v −αq .

(pa = ρ#u=
a now reads pa = 1

16λΓaλ).

Notice that using these constrained helicity spinors one can now write an equivalent
Ferber-Schirafuji-like form of the D-dimansional Brink-Schwarz superparticle action
S =

∫
dτ
(
pa (∂τX a − i∂τθΓaθ)− 1

2 epapa): substituting pa = 1
16λΓaλ we arrive at

S =
1

16

∫
dτλαqλβq Γ̃αβa

(
∂τX a − i∂τθΓaθ

)
, 2λαqλβq = ρ#u=

a Γa
αβ .
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Scattering data and complex helicity spinors

Scattering data and helicity spinors

Light–like momentum kµi , kµikµi = 0 of i-th massless particle in the scattering process can be
expressed in terms of helicity spinors by

kµiδqp = λαqi Γ̃
αβ
µ λβpi = ρ#

i v−αqi Γ̃
αβ
µ v−βpi ,

2ρ#
i vαqi

−vβpi
− = 2λαqiλβpi = Γµαβkµi .

λαqi ’s also carry the information about polarizations, but to make it transparent we need to
supply their space by an additional complex structure.
This can be encoded in the complex polarization vector Uµi which obeys

kµiUµ
i = 0 , UµiUµ

i = 0

and can be decomposed on the space-like vectors of the frame associated to the momentum

kµi through kµi = ρ#
i u=

µi by Uµi = uI
µiU

I
i with U I

i U
I
i = 0.
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Scattering data and complex helicity spinors

The complex null polarization nine-vector U I can be related by

U/qpi := U I
i γ

I
qp = 2w̄qAi w̄pAi

to the complex 16× 8 matrices obeying ’purity conditions’

w̄qAi w̄qBi = 0 , A,B = 1, ..., 8 .

Actually, w̄qAi are internal frame variables or SO(9)/SO(7)× SO(2) harmonics in the sense of
[GIKOS=Galperin, Ivanov, Kalitzin, Ogievetsky, Sokatchev, 1984].

This is to say (w̄qAi ,wqi
A) ∈ SO(9) , where wq

A = (w̄qA)∗, which implies that

wqi
Aw̄pAi + w̄qAiwpi

A = δqp ,

w̄qBiwqi
A = δB

A, wqi
Awqi

B = 0 = w̄qAi w̄qBi ,

as well as the above mentioned U I
i γ

I
qp = 2w̄qAi w̄pAi and a few similar relations with other

vectors of SO(9) vector frame.
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Scattering data and complex helicity spinors

It is convenient to introduce the set of complex spinor frame variables

v∓αA := v∓αqw̄qA , v̄∓A
α := v∓αqw A

q .

By construction, v−αAv±αB = 0 = v−αAv−αB, v+
αAv−αB = δA

B, ....
We will use the SO(1,1) invariant complex helicity spinors

λαAi =

√
ρ#

i v−αAi , λ A
αi =

√
ρ#v̄−A

αi

which can be used to ‘factorize’ the on-shell momentum as

kµΓ̃µαβ = k̃/αβ = 4λ(α
A λ

β)A ⇔ k/αβ = 4λ A
(αλβ)A .

The helicity spinors are solutions of the massless Dirac equations

k̃/αβi λβAi = 0 , k̃/αβi λA
βi = 0 .

and also obey

Ũ/αβi λβAi = 0 , Ũ/αβi λβ
Ai = −2λAi

α .



Intro Scattering equation D=4 preliminaries 11D spinor helicity formalism Polarized Scattering Eq and 11D ambitwistor SSTR Conclusion and outlook

Outline

1 Introduction
2 Scattering equation and amplitudes
3 D=4 preliminaries: spinor helicity formalism and superamplitudes

Amplitudes and superamplitudes in D=4
4 11D spinor moving frame and spinor helicity formalism

Generalizaion of Cartan-Penrose representation to D=11
Scattering data and complex helicity spinors

5 Polarized scattering equation of 11D supergravity and ambitwistor superstring
Constrained spinor function on Riemann sphere
11D supertwistors and ambitwistor superstring
Vertex operator and the constrained meromorphic spinor functions
Polarized scattering equations in D=11

6 Conclusion and outlook



Intro Scattering equation D=4 preliminaries 11D spinor helicity formalism Polarized Scattering Eq and 11D ambitwistor SSTR Conclusion and outlook

Constrained spinor function on Riemann sphere

Back to scattering equation ki · P(σi ) = 0 (⇒ Pµ(σ)Pµ(σ) = 0)

Back to scattering equation: Pµ(σ)Pµ(σ) = 0 suggests the existence of a meromorphic
function carrying 11D spinor index which plays the role of ”

√
Pµ(σ)” in the sence of

Pµ(σ)δqp = λq(σ)Γ̃µλp(σ), 2λαq(σ)λβq(σ) = ΓµαβPµ(σ).

Then it is convenient to assume the existence of a spinor frame field v−αq(σ) and a (purely
gauge or Stückelberg) density ρ#(σ) to solve these by

λαq(σ) =
√
ρ#(σ)v−αp(σ)Spq(σ) , SprSqr = δpq .

Indeed, substituting this, we find
Pµ(σ)δqp = ρ#(σ)v−q (σ)Γ̃µv−p (σ) , 2ρ#(σ)v−αq(σ)v−βq(σ) = ΓµαβPµ(σ) ,

which describe the essential constraints on the spinor frame functions and their relation with

the meromorphic vector Pµ(σ) = ρ#(σ)u=
µ (σ) .

The presence of SO(16) valued matrix field S(σ) ∈ SO(16), SST = I , reflects the invariance
under the SO(16) gauge transformations.
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Constrained spinor function on Riemann sphere

Polarized scattering equation

The 11D polarized scattering equations is the counterpart of

kµi Pµ(σi) = 0

written for the constrained λαq(σ) and the scattering data.
It was proposed by Geyer and Mason [2019], who claimed its relation with a
modified version of the 11D ambitwistor SSTR of [IB: JHEP2014].
In [IB:JHEP 2019] we have shown that appropriate model for this is actually
provided by the original model of [IB:JHEP 2014]
and obtain the form of the meromorphic λαq(σ) and the 11D polarized
scattering equation on this basis.
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11D supertwistors and ambitwistor superstring

11D ambitwistor superstring

The 11D ambitwistor superstring action is [IB:2014]

S =

∫
W2

d2σλαq(σ)λβq(σ)
(
∂̄Xαβ(σ)− i ∂̄θ(α(σ) θβ)(σ)

)
,

where θα(σ) are fermionic 32-component Majorana spinor functions,

Xαβ(σ) = 1
32 Γ̃αβµ Xµ(σ), with bosonic 11-vector Xµ(σ), and

λαq = λαq(σ) are the above constrained spinor functions, obeying

λαqλαp = 0 and

λq(σ)Γ̃µλp(σ) = Pµ(σ)δqp, 2λαq(σ)λβq(σ) = ΓµαβPµ(σ),

where Pµ(σ) obeys Pµ(σ)Pµ(σ) = 0 and in all other respect is defined by the
above constraints.
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11D supertwistors and ambitwistor superstring

For our purposes it is much more convenient to consider the action
S =

∫
W2 d2σλαqλβq

(
∂̄Xαβ − i ∂̄θ(α θβ)

)
with an arbitrary symmetric

Xαβ(σ) = Xβα(σ) ≡ 1
32

Γ̃µ
αβXµ(σ)− 1

64
iZµν(σ)Γ̃αβµν +

1
32 · 5!

Zµ1...µ5(σ)Γ̃αβµ1...µ5
.

Such a modified action is gauge equivalent to the original one, with
Xαβ(σ) =∝ Γ̃µ

αβXµ(σ):

the constraints λαq(σ)λβq(σ) =∝ Γµαβ imposed on λαq guarantee that the

arbitrary δZµν(σ) and δZµ1...µ5(σ) do not change the action
This is the statement of gauge symmetry which can be fixed just by setting
Zµν(σ) = 0 and Zµ1...µ5(σ) = 0, which reduce arbitrary Xαβ(σ) = Xβα(σ) to
Γ̃µ

αβXµ(σ).
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11D supertwistors and ambitwistor superstring

Supertwistor form of the 11D ambitwistor superstring action

The action S =
∫
W2 d2σλαqλβq

(
∂̄Xαβ − i ∂̄θ(α θβ)

)
can be written as

S =

∫
W2

d2σ
(
λαq ∂̄µ

α
q − ∂̄λαq µ

α
q − i ∂̄ηq ηq

)
,

where λαq(σ) =
√
ρ#(σ)v −αp (σ)Spq(σ) and

µαq (σ) := Xαβ(σ)λβq(σ)− i
2
θα(σ) θβ(σ)λβq(σ),

ηq(σ) := θβ(σ)λβq(σ) .

These are the 11D generalizations of the 4D Penrose incidence relations imposed on the set of
16 constrained 11D supertwistors [I.B., Sorokin, de Azcarraga 2006]

ZΛq =
(
λαq , µ

α
q , ηq

)
.
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11D supertwistors and ambitwistor superstring

These 11D incidence relations

µαq (σ) = Xαβ(σ)λβq(σ)− i
2
θα(σ) θβ(σ)λβq(σ), ηq(σ) = θβ(σ)λβq(σ)

describe the general solution of 120 constraints

Jpq := 2λα[pµq]
α + iηpηq = 0

which can be identified with generator of SO(16) gauge symmetry in the
Hamiltonian formalism.

The rigid SUSY leaving invariant the original action,
δεXαβ = iθ(αεβ), δεθα = εα, is realized on our constrained supertwistor by

δελαq = 0 , δεµq
α = −iεαηq , δεηq = εαλαq.
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11D supertwistors and ambitwistor superstring

The action is also invariant under the following gauge symmetry
transformations

δµαq = − 1
64 iδZ ν1ν2(σ)Γ̃αβν1ν2λβq + 1

32· 5!δZ
ν1...ν5(σ)Γ̃ν1...ν5

αβ
λβq

with arbitrary δZµν(σ) and δZ ν1...ν5(σ).
This symmetry allows for the gauge fixing conditions reducing the general
solution of the constraints Jqp = 0 with µαq = Xαβλβq − i

2θ
α θβλβq to

µαq :=
1

32
X ν Γ̃αβν λβq −

i
2
θα θβλβq

which is the bosonic incidence relation for the case of ambitwistor superstring
considered as dynamical system in the standard 11D superspace.
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11D supertwistors and ambitwistor superstring

The advantage of considering ambitwistor superstring as a dynamical system
in enlarged superspace Σ(528|32) is that in its twistor form µαq variable is
restricted by the (first class) constraints Jqp = 0 only.
Furthermore, we can introduce Jqp with Lagrange multiplier into the action,

S =

∫
W2

d2σ
(
λαq ∂̄µ

α
q − ∂̄λαq µ

α
q − i ∂̄ηq ηq

)
+

∫
W2

d2σĀpq
(

2λα[pµ
α
q] + iη[pηq]

)
and consider the variables µαq as unconstrained.
It is important that the action is invariant under SO(16) gauge symmetry

λαq(σ) 7→ λαp(σ)Opq(σ), µαq (σ) 7→ µαp (σ)Opq(σ) OOT = I ,

provided the Lagrange multiplier Āpq = Ā[pq] is transformed as a gauge field,

Āpq 7→
(
O−1∂̄O +O−1ĀO

)pq
, OOT = I .
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11D supertwistors and ambitwistor superstring

The fact that µαq (σ) and ηq(σ) in our action can be treated as unconstrained
allows to obtain immediately the equations of motion for the constrained
spinor functions λαq(σ) and for the 16 fermionic functions ηq(σ),

D̄λαq := ∂̄λαq − λαpĀpq = 0 , D̄ηq := ∂̄ηq − ηpĀpq = 0 ,

where D̄ are SO(16) covariant derivatives.
To arrive at the equation the solution of which can be related with
meromorphic vector function Pµ(σ) =

∑
i

kiµ
σ−σi

by

Pµ(σ)δqp = λq(σ)Γ̃µλp(σ), 2λαq(σ)λβq(σ) = ΓµαβPµ(σ)

we need to include into the action the contribution of a suitable vertex
operators.
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Vertex operator and the constrained meromorphic spinor functions

Vertex operator
The suitable vertex operator was proposed by Geyer and Mason [2019=PLB2020].
In the spinor frame formalism its SO(16) gauge invariant generalization reads

V =

∫
d2σiδ(ki · P(σi )) W exp

(
2iµαq (σi )λαAiW A

qi (σi ) + 2ηq(σi )ηAiW A
qi (σi )

)
where W denotes a possible additional worldsheet operator depending on polarization data
the explicit form of which is not be essential for us.
Besides this, the vertex operator is expressed in terms of fermionic and spinorial bosonic
functions describing the ambitwistor string, ηq(σ) and µαq (σ), λαq(σ) (the latter entering
δ(ki · P(σi )) and the scattering data of i-th particle.

These latter are described by λαAi , which also defines ki through k̃/αβi = 4λ(αi
A λ

β)A
i ,

fermionic ηAi and bosonic matrix function W A
qi (σ) which obeys the purity conditions

W A
qi (σ)W B

qi (σ) = 0 .
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Vertex operator and the constrained meromorphic spinor functions

Pure gauge nature of W A
qi (σ)

Despite of the entrance of W A
qi(σ) into the set of scattering data, we consider it

as a function of σ as otherwise we break explicitly the local SO(16) symmetry.
However, it should be expressed in terms of wA

pi (the square root of the
polarization vector in the sense of U/qpi := U I

i γ
I
qp = 2w̄qAiw̄pAi ) by

W A
qi(σ) = wA

piÔpriÕrq(σ) , Õpq(σ) ∈ SO(16) , Ôpqi ∈ SO(16) .

This eq. implies that W A
qi(σ) is essentially a Stückelberg field for SO(16)

gauge symmetry and its presence implies that this gauge symmetry is
actually broken by the vertex operators, i.e. at σ = σi .
Clearly, no independent equation can be obtained by varying this Stückelberg
field.
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Vertex operator and the constrained meromorphic spinor functions

The simplest calculations of the path integral with a vertex operator insertions
can be done by searching for the saddle point of the exponent of the action
multiplied by the exponential factors from the vertex operators.
This is to say, the main contribution to the path integral will come from the
extrema of the effective action with the source terms coming from vertex
operator, which is essentially

S + SV =

∫
W2

d2σ
(
λαq ∂̄µ

α
q − ∂̄λαq µ

α
q − i ∂̄ηq ηq

)
+

+

∫
W2

d2σĀ[pq]
(

2λα[pµ
α
q] + iη[pηq]

)
+

+
∑

i

∫
W2

d2σδ(σ − σi)
(

2µαq (σ)λαAiW A
qi(σ)− 2iηq(σ)ηAiW A

qi(σ)
)
.
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Vertex operator and the constrained meromorphic spinor functions

Eqs of motion which follow from the variation of the eff. action with respect to
the unconstrained fields, µαq (σ) and ηq(σ), are

D̄λαq(σ) =
∑

i

δ(σ − σi)λαAiW A
qi(σi) , D̄ηq(σ) =

∑
i

δ(σ − σi)ηAiW A
qi(σi) .

The SO(16) connection Āpq in the covariant derivative D̄ is a one component
gauge field associated to the derivative in one (anti-holomorphic) complex
direction and, as such, it can always be gauged away.
This simplifies the search for general solution of the equation which reads

λαq(σ) =
n∑

i=1

λαAiW A
qi (σ)

σ − σi
, ηq(σ) =

n∑
i=1

ηAiW A
qi (σ)

σ − σi
,

where Wqi
A(σ) = W A

pi Õpq(σ) and W A
qi = wA

piÔpqi .
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Polarized scattering equations in D=11

Towards polarized scattering equation

Substituting the above solution λαq(σ) =
∑n

i=1
λαAi W

A
qi (σ)

σ−σi
of the 11D ambitwistor superstring

equations into the 11D generalization of the Cartan-Penrose relation

Pµ(σ)δqp = λq(σ)Γ̃µλp(σ), 2λαq(σ)λβq(σ) = ΓµαβPµ(σ),

we find

∑
i

λαAi

σ − σi

∑
j

λβBj

σ − σj
W B

qj (σ)W A
qi (σ) =

∑
i

2λ(α|Aiλ
A
|β)i

σ − σi
.

The second order poles are absent in the r.h.s. ⇒ should vanish in the l.h.s.

This implies the purity conditions W A
qi (σ)W B

qi (σ) = 0 which is clearly obeyed for
W A

qi (σ) = wA
piOpqi (σ) (as, by definition wA

piw
B
pi = 0 and Opqi (σ) ∈ SO(16)).
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Polarized scattering equations in D=11

Polarized scattering equation
Furthermore, the residues of the first order poles of l.h.s. and r.h.s. of∑

i

λαAi
σ−σi

∑
j

λβBj
σ−σj

W B
qj (σ)W A

qi (σ) =
∑

i

2λ(α|Aiλ
A
|β)i

σ−σi
coincide if the helicity spinors associated to the

scattered particles are related by the condition

∑
j

λαBjW B
qj W

A
qi

σi − σj
= λA

αi .

Using λαq(σ) =
∑n

i=1
λαAi W

A
qi (σ)

σ−σi
we can write this as

λαq(σi )W A
qi (σi ) = λ A

αi .

which is 11D polarized scattering equation proposed by Geyer and Mason [2019=PLB2020]
(actually, the the SO(16) covariant generalizarion of this).
Our study in [I.B. JHEP 2019] revealed the moving frame nature of both the constrained
spinors and spinor functions involved in it, and provides a rigorous derivation of the polarized
scattering equation from the ambitwistor superstring action.
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Polarized scattering equations in D=11

Polarized scattering equation

Furthermore, using Wi(σ) = wiÔi
˜O(σ), we can write the PSE in the form

∑
j

λαBjwB
qjw

A
qi

σi − σj
= λA

αi

(
⇒

∑ ki · kj

σi − σj
= 0

)

which includes the scattering data described by the helicity spinors and
internal harmonics (internal frame variables) only.

It provides a polarized counterpart of the SE in its form of
∑

j
ki ·kj
σi−σj

= 0,

while
λαq(σi)W A

qi(σi) = λ A
αi (⇒ ki · P(σi) = 0)

is a polarized counterpart of the SE in its form of ki · P(σi) = 0.



Intro Scattering equation D=4 preliminaries 11D spinor helicity formalism Polarized Scattering Eq and 11D ambitwistor SSTR Conclusion and outlook

Outline

1 Introduction
2 Scattering equation and amplitudes
3 D=4 preliminaries: spinor helicity formalism and superamplitudes

Amplitudes and superamplitudes in D=4
4 11D spinor moving frame and spinor helicity formalism

Generalizaion of Cartan-Penrose representation to D=11
Scattering data and complex helicity spinors

5 Polarized scattering equation of 11D supergravity and ambitwistor superstring
Constrained spinor function on Riemann sphere
11D supertwistors and ambitwistor superstring
Vertex operator and the constrained meromorphic spinor functions
Polarized scattering equations in D=11

6 Conclusion and outlook



Intro Scattering equation D=4 preliminaries 11D spinor helicity formalism Polarized Scattering Eq and 11D ambitwistor SSTR Conclusion and outlook

Conclusion

In this talk, following [I.B. JHEP 11 (2019)] we have revisited the formalism of
the 11D polarized scattering equations of Geyer and Mason [2019=PLB2020]
with the use of spinor frame approach (or Lorentz harmonic approach).
In particular, we derived the equations for spinorial meromorphic function
λαq(σ) from the (spinor frame formulation) of 11D ambitwistor superstring [I.B.
JHEP2014] supplemented by the suitable vortex operator
and then obtained the 11D polarized scattering equation on this basis.
To this end, the (gauge equivalent) formulation of ambitwistor superstring as
dynamical system in an enlarged 11D superspace Σ(528|32) with additional
tensor central charge coordinates is very useful.
Furthermore we have used extensively the 11D supertwistor approach
[I.B.+de Azcarraga+Sorokin 2006]
and SO(16) hidden symmetry of the ambitwistor superstring [I.B. JHEP2014].
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Outlook

Among interesting directions of development of present results let us mention
their use in calculations of 11D SUGRA and 10D SYM amplitudes,
in particular, to obtain recurrent relations for 11D and 10D amplitudes,
generalizing the 6D line of [Albonico, Geyer, Mason, JHEP 08 (2020)].
It is also interesting to construct 11D generalization of the 6D rational map
and symplectic Grassmannians approach of [Heydeman+Schwarz+Wen
JHEP2017], [Cachazo+Guevara+Heydeman+Mizera+Schwarz+Wen
JHEP2018] (see [Schwarz+Wen JHEP 2019] for 6D interrelations).
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